Skip to main content
Log in

Trace Formulas for Stochastic Evolution Operators: Weak Noise Perturbation Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Periodic orbit theory is all effective tool for the analysis of classical and quantum chaotic systems. In this paper we extend this approach to stochastic systems, in particular to mappings with additive noise. The theory is cast in the standard field-theoretic formalism and weak noise perturbation theory written in terms of Feynman diagrams. The result is a stochastic analog of the next-to-leading ħ corrections to the Gutzwiller trace formula, with long-time averages calculated from periodic orbits of the deterministic system. The perturbative corrections are computed analytically and tested numerically on a simple 1-dimensional system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Cvitanović and E. Ott, Steady fast kinematic dynamos: The topological entropy bound and the effect of magnetic field diffusion, in preparation.

  2. E. Aurell and A. D. Gilbert, Fast dynamos and determinants of singular intergral-opertors, Geophysical and Astrophysical Fluid Dynamics 73:5–32 (1993).

    Google Scholar 

  3. N. J. Balmforth, P. Cvitanović, G. R. Ierley, E. A. Spiegel, and G. Vattay, Advection of vector fields by chaotic flows, Annals of New York Academy of Sciences 706:148 (1993), Volume entitled Stochastic Process in Astrophysics.

    Google Scholar 

  4. S. Childress and A. D. Gilbert, Stretch, Twist, Fold: The Fast Dynamo, Vol. M37, Lecture Notes in Physics. New Series M. (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  5. Ya. G. Sinai, Gibbs measures in ergodic theory, Russian Mathematical Surveys 166:21 (1972).

    Google Scholar 

  6. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov-Diffeomorphisms, Vol. 470, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  7. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, 1978).

    Google Scholar 

  8. P. Cvitanović, Field theory, NORDITA lecture notes, Copenhagen, January 1983. Notes prepared by Ejnar Gyldenkerne.

  9. P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical mechanics of classical systems, Phys. Rev. A 8(1):423–437 (1973).

    Google Scholar 

  10. G. Parisi and Y. Wu, Perturbation-theory without gauge fixing, Scientia Sinica 24:483–496 (1981).

    Google Scholar 

  11. M. J. Feigenbaum and B. Hasslacher, Irrational decimations and path-integrals for external noise, Phys. Rev. Lett. 49:605–609 (1982).

    Google Scholar 

  12. M. Gutzwiller, Chaos in Classical and uantum Mechanics (Springer-Verlag, New York, 1990).

    Google Scholar 

  13. P. Gaspard and D. Alonso, h expansion for the periodic-orbit quantization of hyperbolic systems, Phys. Rev. A 47:R3468–R3471 (1993).

    Google Scholar 

  14. P. Gaspard and D. Alonso, h expansion for the periodic-orbit quantization of chaotic systems, Chaos 3:601 (1993).

    Google Scholar 

  15. P. Gaspard, h-expansion for quantum trace formulas, G. Casati and B. Chirikov, eds., Quantum Chaos between Order and Disorder, pp. 385–404 (Cambridge University Press, 1995).

  16. G. Vattay, Bohr-Sommerfeld quantization of periodic orbits, Phys. Rev. Lett. 76:1059–1062 (1996).

    Google Scholar 

  17. P. Reimann, Noisy one-dimensional maps near a crisis 1: Weak gaussian white and colored noise, J. Stat. Phys. 82:1467–1501 (1996).

    Google Scholar 

  18. P. Reimann, Noisy one-dimensional maps near a crisis 2: General uncorrelated weak noise, J. Stat. Phys. 85:403–425 (1996).

    Google Scholar 

  19. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  20. P. Cvitanović et al. Classical and quantum chaos: A cyclist treatise. http://www.nbi.dk/ChaosBook/ (Niels Bohr Institute, Copenhagen, 1998).

    Google Scholar 

  21. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 1981).

    Google Scholar 

  22. A. Lasota and M. MacKey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  23. C. P. Dettmann, Traces and determinants of strongly stochastic operators, chaodyn/9806019.

  24. P. Damgaard and H. Huffel, eds. Stochastic Quantization, (World Scientific, Singapore, 1988).

    Google Scholar 

  25. N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals (Dover, New York, 1986).

    Google Scholar 

  26. P. Cvitanović, C. P. Dettmann, R. Mainieri, and G. Vattay, Trace formulas for stochastic evolution operators: Smooth conjugation method, in preparation.

  27. L. Kadanoff and C. Tang, Escape rate from strange repellers, Proceedings of the National Academy of Science, USA 81:1276 (1984).

    Google Scholar 

  28. O. Cepas and J. Kurchan, Canonically invariant formulation of Langevin and Fokker-Planck equations, cond-mat/9706296.

  29. M. V. Berry and J. P. Keating, A rule for quantizing chaos, J. Phys. A 23(21):4839–4849 (1990).

    Google Scholar 

  30. P. Cvitanović and G. Vattay, Entire Fredholm determinants for evaluation of semiclassical and thermodynamical spectra, Phys. Rev. Lett. 71:4138–4141 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvitanović, P., Dettmann, C.P., Mainieri, R. et al. Trace Formulas for Stochastic Evolution Operators: Weak Noise Perturbation Theory. Journal of Statistical Physics 93, 981–999 (1998). https://doi.org/10.1023/B:JOSS.0000033173.38345.f9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000033173.38345.f9

Navigation