Skip to main content
Log in

On Spherically Symmetric Gravitational Collapse

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper considers the dynamics of a classical problem in astrophysics, the behavior of spherically symmetric gravitational collapse starting from a uniform, density cloud of interstellar gas. Previous work on this problem proposed a universal self-similar solution for the collapse yielding a collapsed mass much smaller than the mass contained in the initial cloud. This paper demonstrates the existence of a second threshold—not far above the marginal collapse threshold—above which the asymptotic collapse is not universal. In this regime, small changes in the initial data or weak stochastic forcing leads to qualitatively different collapse dynamics. In the absence of instabilities, a progressing wave solution yields a collapsed uniform core with infinite density. Under some conditions the instabilities ultimately lead to the well-known self-similar dynamics. However, other instabilities can cause the density profile to become non-monotone and produce a shock in the velocity. In presenting these results, we outline pitfalls of numerical schemes that can arise when computing collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Russel E. Caflisch and George C. Papanicolaou, Singularities in Fluids, Plasmas, and Optics, Volume C404 of NATO ASI Series (Kluwer Academic Publishers, 1993).

  2. Peter Constantin, Todd F. Dupont, Raymond E. Goldstein, Leo P. Kadanoff, Michael Shelley, and Su-Min Zhou, Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E 47:4169–4181 (1993).

    Google Scholar 

  3. R. B. Larson, Numerical calculations of the dynamics of a collapsing protostar, Mon. Not. R. Astr. Soc. 145:271–295 (1969).

    Google Scholar 

  4. A. J. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39:5187–5220 (1986).

    Google Scholar 

  5. A. P. Boss, Giant planet formation by gravititational instability, Science 276:1836 (1997).

    Google Scholar 

  6. G. P. Kuiper, On the origin of the solar system, Proc. Natl. Acad. Sci. 37(1):1–14 (1951).

    Google Scholar 

  7. M. Mayor and D. Queloz, Nature 378:355 (1995).

    Google Scholar 

  8. H. Mizuno, Formation of giant planets, Prog. Theor. Phys. 64:544 (1980).

    Google Scholar 

  9. D. C. Black and M. S. Matthews, Protostars and Planets (The University of Arizona Press, Tucson, Arizona, 1985).

    Google Scholar 

  10. C. J. Lada and N. D. Kylafis, The Physics of Star Formation and Early Stellar Evolution (Kluwer Academic Publishers, Boston, 1991).

    Google Scholar 

  11. R. Capuzzo-Dolcetta, C. Chiosi, and A. Di Fazio, Physical Processes in Fragmentation and Star Formation (Kluwer Academic Publishers, Boston, 1990).

    Google Scholar 

  12. M. K.-H. Kiessling, On the equilibrium statistical mechanics of isothermal classical selfgravitating matter, J. Stat. Phys. 55:203–57 (1989).

    Google Scholar 

  13. M. V. Penston, Dynamics of self-gravitating gaseous spheres III, Mon. Not. R. Astr. Soc. 144:425–448 (1969).

    Google Scholar 

  14. Frank H. Shu, Self-similar collapse of isothermal spheres and star formation, Astrophys. J. 214:488–497 (1977).

    Google Scholar 

  15. F. H. Shu, F. C. Adams, and S. Lizano. Ann. Rev. Astron. Astrop. 25:23 (1987).

    Google Scholar 

  16. C. Hunter, The collapse of unstable isothermal spheres, Astrophys. J. 218:834–845 (1977).

    Google Scholar 

  17. P. N. Foster and R. A. Chevalier, Gravitational collapse of an isothermal sphere, Astrophys. J. 416:303–311 (1993).

    Google Scholar 

  18. J. H. Jeans, Astronomy and Cosmogony (Cambridge University Press, New York, 1929) (reprinted by Dover, 1961)

    Google Scholar 

  19. M. H. Heyer, F. J. Vrba, R. L. Snell, F. P. Schloerb, S. E. Strom, P. F. Goldsmith, and K. M. Strom, Astrophys. J. 324:311 (1987).

    Google Scholar 

  20. G. B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974).

    Google Scholar 

  21. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, 10th ed. (CRC Press, Boca Raton, 1993).

    Google Scholar 

  22. Ya. B. Zeldovich and Yu P. Raizer, Elements of Gasdynamics and Classical Theory of Shock Waves (Academic Press, New York, 1968).

    Google Scholar 

  23. R. Courant and K. O. Friedirchs, Supersonic Flow and Shock Waves (Interscience Publisher, New York, 1948).

    Google Scholar 

  24. R. J. LeVeque, Numerical Methods for Conservation Laws (Birkhauser, Basel, 1992).

    Google Scholar 

  25. R. Emden, Gaskugeln—Anwendungen der Mechan, Warmtheorie (Druck und Verlag Von B. G. Teubner, Leipzig, 1907).

    Google Scholar 

  26. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York, 1967).

    Google Scholar 

  27. H. T. Davis. Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962).

    Google Scholar 

  28. P. Natarajan and D. Lynden-Bell, An analytic approximation to the isothermal sphere, Mon. Not. R. Astr. Soc. 286:268–270 (1997).

    Google Scholar 

  29. F. K. Liu, Polytropic gas spheres: An approximate analytic solution of the lane-emden equation, Mon. Not. R. Astr. Soc. 281:1197–1205 (1996).

    Google Scholar 

  30. M. P. Brenner, L. Levitov, and E. O. Budrene, Physical mechanisms for chemotactic pattern formation by bacteria, Biophys. J. (1998), to appear, April.

  31. M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, and S. Venkataramani, Diffusion, attraction, collapse, preprint, 1998.

  32. M. Kiessling, private communication.

  33. D. Lynden-Bell and Wood, Mon. Not. R. Astr. Soc. 138:495–525 (1968).

    Google Scholar 

  34. G. Horwitz and J. Katz. Steepest descent technique and stellar equilibrium statistical mechanics, III. Stability of various ensembles. Astrophys. J. 222:941–958 (1978).

    Google Scholar 

  35. H. B. Keller, Numerical Solution of Two Point Boundary Value Problems (SIAM, Philadelphia, 1976).

    Google Scholar 

  36. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems (John Wiley-Interscience, New York, 1967).

    Google Scholar 

  37. E. A. Dorfi and L. O'C. Drury, Simple adaptive grids for 1-d initial value problems, J. Comp. Phys. 69:175–195 (1987).

    Google Scholar 

  38. A. Whitworth and D. Summers, Self-similar condensation of spherically symmetric self-gravitating isothermal gas clouds, Mon. Not. R. Astr. Soc. 214:1–25 (1985).

    Google Scholar 

  39. A. Ori and T. Piran, A simple stability criterion for isothermal spherical self-similar flow, Mon. Not. R. Astr. Soc. 234:821–829 (1988).

    Google Scholar 

  40. R. B. Larson, Cloud fragmentation and stellar masses, Mon. Not. R. Astr. Soc. 214:379–398 (1985).

    Google Scholar 

  41. R. B. Larson, Towards understanding the stellar initial mass function, Mon. Not. R. Astr. Soc. 256:641–646 (1992).

    Google Scholar 

  42. O. I. Bogoyavlensky, Methods in the ualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  43. T. Hanawa and K. Nakayama, Stability of similarity solutions for a gravitationally contracting isothermal sphere: Convergence to the Larson-Penston solution, Astrophys. J. 484:238–244 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, M.P., Witelski, T.P. On Spherically Symmetric Gravitational Collapse. Journal of Statistical Physics 93, 863–899 (1998). https://doi.org/10.1023/B:JOSS.0000033167.19114.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000033167.19114.b8

Navigation