Skip to main content
Log in

Scaling of a Slope: The Erosion of Tilted Landscapes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We formulate a stochastic equation to model the erosion of a surface with fixed inclination. Because the inclination imposes a preferred direction for material transport, the problem is intrinsically anisotropic. At zeroth order, the anisotropy manifests itself in a linear equation that predicts that the prefactor of the surface height–height correlations depends on direction. The first higher order nonlinear contribution from the anisotropy is studied by applying the dynamic renormalization group. Assuming an inhomogeneous distribution of soil substrate that is modeled by a source of static noise, we estimate the scaling exponents at first order in an ε-expansion. These exponents also depend on direction. We compare these predictions with empirical measurements made from real landscapes and find good agreement. We propose that our anisotropic theory applies principally to small scales and that a previously proposed isotropic theory applies principally to larger scales. Lastly, by considering our model as a transport equation for a driven diffusive system, we construct scaling arguments for the size distribution of erosion “events” or “avalanches.” We derive a relationship between the exponents characterizing the surface anisotropy and the avalanche size distribution, and indicate how this result may be used to interpret previous findings of power-law size distributions in real submarine avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys. 68:1259 (1996).

    Google Scholar 

  2. L. P. Kadanoff, Rev. Mod. Phys. January 1999, 71 (in press).

  3. P. K. Haff, J. Fluid Mech. 134:401 (1983).

    Google Scholar 

  4. For a recent view of the stability of wet sandpiles, see, D. J. Hornbaker, R. Albert, I. Albert, A.-L. Barabási, and P. Schiffer, Nature 387:765 (1997).

    Google Scholar 

  5. I. Rodriguez-Iturbe and A. Rinaldo, Fractal River Basins: Chance and Self-Organization (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  6. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    Google Scholar 

  7. W. I. Newman and D. L. Turcotte, Geophys. J. Int. 100:433 (1990).

    Google Scholar 

  8. D. L. Turcotte, Fractals and Chaos in Geology and Geophysics (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  9. D. M. Mark and P. B. Aronson, Mathematical Geology 16:617 (1984).

    Google Scholar 

  10. M. Matsushita and S. Ouchi, Physica D 38:246 (1989).

    Google Scholar 

  11. S. Ouchi and M. Matsushita, Geomorphology 5:15 (1992).

    Google Scholar 

  12. C. G. Chase, Geomorphology 5:39 (1992).

    Google Scholar 

  13. N. A. Lifton and C. G. Chase, Geomorphology 5, 77 (1992).

    Google Scholar 

  14. G. I. Barenblatt, A. V. Zhivago, Y. P. Neprochnov, and A. A. Ostrovskiy, Oceanology 24:695 (1984).

    Google Scholar 

  15. L. E. Gilbert, Pure. Appl. Geophys. 131:241 (1989).

    Google Scholar 

  16. D. Norton and S. Sorenson, Pure. Appl. Geophys. 131:77 (1989).

    Google Scholar 

  17. T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. 254:215 (1995).

    Google Scholar 

  18. L. P. Kadanoff, Physica A 163:1 (1990).

    Google Scholar 

  19. R. Pastor-Satorras and D. H. Rothman, Phys. Rev. Lett. 80:4349 (1998).

    Google Scholar 

  20. K. Chan, R. Pastor-Satorras, and D. H. Rothman (unpublished).

  21. D. Sornette and Y.-C. Zhang, Geophys. J. Int. 113:382 (1993).

    Google Scholar 

  22. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  23. H. J. Jensen, Self-Organized criticality (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  24. J. E. Simpson, Gravity Currents: In the Environment and the Laboratory, 2nd edition (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  25. F. Press and R. Siever, Earth (W. H. Freeman and Company, San Francisco, 1982).

    Google Scholar 

  26. R. Hiscott et al., Proc. Ocean Drilling Program, Scientific Results 126:75 (1992).

    Google Scholar 

  27. D. H. Rothman, J. P. Grotzinger, and P. Flemings, J. Sedimentary Research 64:59 (1994).

    Google Scholar 

  28. D. H. Rothman and J. P. Grotzinger, Nonlinear Processes in Geophysics 2:178 (1995).

    Google Scholar 

  29. M. Marisili, A. Maritan, F. Toigo, and J. R. Banavar, Rev. Mod. Phys. 68:963 (1996).

    Google Scholar 

  30. A.-L. Barabási and H. Stanley, Fractal Concepts in Surface Growth (Cambridge Univ. Press, New York, 1995).

    Google Scholar 

  31. W. E. H. Culling, J. Geol. 68:336 (1960).

    Google Scholar 

  32. P. Whittle, Biometrika 49:305 (1962).

    Google Scholar 

  33. S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London A 381:17 (1982).

    Google Scholar 

  34. A. Chakrabarti and R. Toral, Phys. Rev. B 40:11419 (1989).

    Google Scholar 

  35. J. G. Amar and F. Family, Phys. Rev. A 41:3399 (1990).

    Google Scholar 

  36. B. Grossmann, H. Guo, and M. Grant, Phys. Rev. A 43:1727 (1991).

    Google Scholar 

  37. A. E. Scheidegger, Theoretical Geomorphology, 2nd ed. (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  38. T. Hwa and M. Kardar, Phys. Rev. Lett. 62:1813 (1989).

    Google Scholar 

  39. T. Hwa and M. Kardar, Phys. Rev. A 45:7002 (1992).

    Google Scholar 

  40. T. R. Smith and F. P. Bretherton, Water Resour. Res. 8:1506 (1972).

    Google Scholar 

  41. S. Kramer and M. Marder, Phys. Rev. Lett. 68:205 (1992).

    Google Scholar 

  42. G. N. Barzini and R. C. Ball, J. Phys. A 26:6777 (1993).

    Google Scholar 

  43. E. Somfai and L. M. Sander, Phys. Rev. E 56:R5 (1997).

    Google Scholar 

  44. J. R. Banavar et al., Phys. Rev. Lett. 78:4522 (1997).

    Google Scholar 

  45. A. Czirók, E. Somfai, and J. Vicsek, Phys. Rev. Lett. 71:2154 (1993).

    Google Scholar 

  46. L. A. N. Amaral, A.-L. Barabási, and H. Stanley, Phys. Rev. Lett. 73:62 (1994).

    Google Scholar 

  47. T. Natterman, S. Stepanow, L.-H. Tang, and H. Leschhorn, J. Physique II 2:1483 (1992).

    Google Scholar 

  48. O. Narayan and D. S. Fisher, Phys. Rev. B 48:7030 (1993).

    Google Scholar 

  49. G. Caldarelli et al., Phys. Rev. E 55:R4865 (1997).

    Google Scholar 

  50. P. S. Dodds, R. Pastor-Satorras, and D. H. Rothman (unpublished).

  51. T. Natterman and L.-H. Tang, Phys. Rev. A 45:7156 (1992).

    Google Scholar 

  52. S. K. Ma and G. F. Mazenko, Phys. Rev. B 11:4080 (1975).

    Google Scholar 

  53. D. Forster, D. R. Nelson, and M. J. Stephan, Phys. Rev. A 16:732 (1977).

    Google Scholar 

  54. E. Medina et al., Phys. Rev. A 39:3053 (1989).

    Google Scholar 

  55. Z.-W. Lai and S. Das Sarma, Phys. Rev. Lett. 66:2348 (1991).

    Google Scholar 

  56. G. Dietler and Y.-C. Zhang, Physica A 191:213 (1992).

    Google Scholar 

  57. D. L. Orange, R. S. Anderson, and N. A. Breen, GSA Today 4:29 (1994).

    Google Scholar 

  58. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38:364 (1988).

    Google Scholar 

  59. L. A. N. Amaral and K. B. Lauritsen, Phys. Rev. A 54:R4512 (1996).

    Google Scholar 

  60. B. Tadić, Phys. Rev. E 58 (1998).

  61. A. Malinverno, Basin Research 9:263 (1997).

    Google Scholar 

  62. T. R. H. Davies, Rock Mechanics 15:9 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastor-Satorras, R., Rothman, D.H. Scaling of a Slope: The Erosion of Tilted Landscapes. Journal of Statistical Physics 93, 477–500 (1998). https://doi.org/10.1023/B:JOSS.0000033160.59155.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000033160.59155.c6

Navigation