Skip to main content
Log in

Canonical versus Grand-Canonical Free Energies and Phase Diagrams of a Bipolaronic Superconductor Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We continue the discussion of a bipolaronic superconductor (resp. an anisotropic antiferromagnet in quasispin formulation) as formulated in a previous work, based on a quantum-statistical, microscopic mean-field model. The grand-canonical thermodynamic limit is compared with the canonical thermodynamic limit in terms of a net of perturbations, becoming singular in the infinite lattice limit. A generalized thermostatistical framework is elaborated which covers model potentials with infinite parts. The function of the limiting free energy density in selecting the (stable) phases with broken symmetry is graphically illustrated. The phase diagrams for the two types of ensembles are shown to differ in the region where both the gauge symmetry and the invariance under sublattice exchange are broken. In particular, the type of the phase transitions, the order of the critical points, and the shape of some phase boundaries are found to depend on the ensemble, which clarifies certain controversial topics for these models. The uniqueness of the limiting Gibbs states with free boundary conditions in all thermodynamic phase regions is proved, and their decomposition into pure phase states in terms of a symmetric measure is evaluated. The field operators of the condensed particles are determined in the representations over the limiting Gibbs states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Gerisch and A. Rieckers, Limiting gibbs states and phase transitions of a bipartite mean-field hubbard-model, J. Stat. Phys. 91:759 (1998).

    Google Scholar 

  2. S. Robaszkiewicz, R. Micnas, and K. A. Chao, Thermodynamic properties of the extended Hubbard model with strong intra-atomic attraction and an arbitrary electron density, Phys. Rev. B 23:1447–1458 (1981).

    Google Scholar 

  3. A. Alexandrov and J. Ranninger, Theory of bipolarons and bipolaronic bands, Phys. Rev. B 23:1796–1801 (1981).

    Google Scholar 

  4. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Superconductivity in narrow-band systems with local nonretarded attractive interactions, Rev. Mod. Phys. 62:113–171 (1990).

    Google Scholar 

  5. A. S. Alexandrov and N. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1995).

    Google Scholar 

  6. A. D. Bruce and A. Aharony, Coupled order parameters, symmetry-breaking irrelevant scaling fields, and tetracritical points, Phys. Rev. B 11:478–499 (1975).

    Google Scholar 

  7. M. E. Fisher and D. R. Nelson, Spin flop, supersolids, and bicritical and tetracritical points, Phys. Rev. Lett. 32:1350–1353 (1974).

    Google Scholar 

  8. Y. Imry, D. J. Scalapino, and L. Gunther, Phase transitions in systems with coupled order parameters, Phys. Rev. B 10:2900–2902 (1974).

    Google Scholar 

  9. J. M. Kosterlitz, D. R. Nelson, and M. E. Fisher, Bicritical and tetracritical points in anisotropic antiferromagnetic systems, Phys. Rev. B 13:412–432 (1976).

    Google Scholar 

  10. K.-S. Liu and M. E. Fisher, Quantum lattice gas and the existence of a supersolid, J. Low Temp. Phys. 10:655–683 (1973).

    Google Scholar 

  11. R. F. Werner, Large deviations and mean-field quantum systems, In Quantum Probability and Related Topics VII, pp. 349–381 (World Scientific, Singapore, 1992).

    Google Scholar 

  12. R. B. Israel, Convexity in the Theory of Lattice Gases (Princeton University Press, 1979).

  13. T. Gerisch, A. Rieckers, and H.-J. Volkert, Thermodynamic Formalism and Phase Transitions of Generalized Mean-Field Quantum Lattice Models, Z. Naturforsch. 53a:179–207 (1998).

    Google Scholar 

  14. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1 (Springer-Verlag, 1987).

  15. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. II (Springer-Verlag, 1981).

  16. G. L. Sewell, Quantum Theory of Collective Phenomena (Clarendon Press, Oxford, 1986).

    Google Scholar 

  17. S. Sakai, C*-Algebras and W*-Algebras (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  18. E. Størmer, Symmetric states of infinite tensor products of C*-algebras, J. Funct. Anal. 3:48–68 (1969).

    Google Scholar 

  19. T. Gerisch, Internal symmetries and limiting Gibbs states in quantum lattice mean field theories, Physica A 197:284–300 (1993).

    Google Scholar 

  20. W. Fleig, Operatoralgebraische Quantenstatistik von Zusammengesetzten langreichweitigen Gittersystemen, Ph.D. thesis (Dissertation), Universität Tübingen, 1985, unpublished.

  21. M. J. Donald, Relative Hamiltonians which are not bounded from above, J. Funct. Anal. 91:143–173, (1990).

    Google Scholar 

  22. G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta 62:980–1003 (1989).

    Google Scholar 

  23. T. Gerisch and A. Rieckers, The quantum statistical free energy minimum principle for multi-lattice mean field theories, Z. Naturforsch. 45a:931–945 (1990).

    Google Scholar 

  24. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, 1985).

  25. T. Gerisch and A. Rieckers, Comparison of weakly inhomogeneous BCS-and Hubbardmodels, Physica A 242:439–466 (1997).

    Google Scholar 

  26. E. Størmer, Large groups of automorphisms of C*-algebras, Commun. Math. Phys. 5:1–22 (1967).

    Google Scholar 

  27. W. Flcig, On the symmetry breaking mechanism of the strong-coupling BCS-model, Acta Phys. Austr. 55:135–153 (1983).

    Google Scholar 

  28. T. Gerisch and A. Rieckers, Limiting dynamics, KMS-states, and macroscopic phase angle for weakly inhomogeneous BCS-models, Helv. Phys. Acta 70:727–750 (1997).

    Google Scholar 

  29. P. W. Anderson, Coherent matter field phenomena in superfluid, Lectures of Belfer Graduate School of Sciences 2:21–40 (1967).

    Google Scholar 

  30. G. L. Sewell, Macroscopic quantum theoretic approach to superconductive electrodynamics, In Superconductivity and Strongly Correlated Electronic Systems (World Scientific, Singapore, 1994).

    Google Scholar 

  31. C. J. Gorter and T. van Peski-Tinbergen, Transitions and phase diagrams in an orthorhombic antiferromagnetic crystal, Physica 22:273–287 (1956).

    Google Scholar 

  32. G. J. Butterworth and V. S. Zidell, Magnetothermal studies of the phase transitions in CuCl2·2H2O, J. Appl. Phys. Suppl. 40:1033–1034 (1969).

    Google Scholar 

  33. K. W. Blazey, H. Rohrer, and R. Webster, Magnetocaloric effects and the angular variation of the magnetic phase diagram of antiferromagnetic GdAlO3, Phys. Rev. B 4:2287–2302 (1971).

    Google Scholar 

  34. E. Müller-Hartmann and J. Zittartz, Theory of magnetic impurities in superconductors—depression of the transition temperature, Z. Physik 234:58 (1970).

    Google Scholar 

  35. E. Müller-Hartmann and J. Zittartz, Kondo effect in superconductors, Phys Rev. Lett. 26:428 (1971).

    Google Scholar 

  36. S. V. Vonsowsky, Yu. A. Izyumov, and E. Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds (Springer, 1982).

  37. N. Plakida, High-Temperature Superconductivity (Springer, Berlin, 1995).

    Google Scholar 

  38. F. Mancini, S. Marra, A. M. Allega, and H. Matsumoto, Mean field analysis of the Hubbard model, Physica C 240:2253–2254 (1994).

    Google Scholar 

  39. F. Mancini, S. Marra, and H. Matsumoto, The two-dimensional t-t′-U Hubbard model as a 1minimal model for cuprate materials, preprint, cond-mat/9707088, 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerisch, T., Münzner, R. & Rieckers, A. Canonical versus Grand-Canonical Free Energies and Phase Diagrams of a Bipolaronic Superconductor Model. Journal of Statistical Physics 93, 1021–1049 (1998). https://doi.org/10.1023/B:JOSS.0000033152.73539.a2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000033152.73539.a2

Navigation