Skip to main content
Log in

Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb Systems. III. Loopwise Expansion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present an exact field theoretical representation of an ionic solution made of charged hard spheres. The action of the field theory is obtained by performing a Hubbard–Stratonovich transform of the configurational Boltzmann factor. It is shown that the Stillinger–Lovett sum rules are satisfied if and only if all the field correlation functions are short range functions. The mean field, Gaussian and two-loops approximations of the theory are derived and discussed. The mean field approximation for the free energy constitutes an exact lower bound for the exact free energy, while the mean field pressure is an exact upper bound. The one-loop order approximation is shown to be identical with the random phase approximation of the theory of liquids. Finally, at the two-loop order and in the pecular case of the restricted primitive model, one recovers results obtained in the framework of the mode expansion theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Hansen and I. R. Mc Donald, Theory of Simple Liquids (Academic Press, London, 1986).

    Google Scholar 

  2. J.-M. Caillol and J.-L. Raimbault, J. Stat. Phys. 103:753(2001).

    Google Scholar 

  3. J.-L. Raimbault and J.-M. Caillol, J. Stat. Phys. 103:777(2001).

    Google Scholar 

  4. M. Kac, Phys. Fluids 2:8(1959).

    Google Scholar 

  5. A. J. F. Siegert, Physica 26:530(1960).

    Google Scholar 

  6. R. L. Stratonovich, Sov. Phys. Solid State 2:1824(1958).

    Google Scholar 

  7. J. Hubbard, Phys. Rev. Lett. 3:77(1954).

    Google Scholar 

  8. J. Hubbard and P. Schofield, Phys. Lett. A 40:245(1972).

    Google Scholar 

  9. S. F. Edwards, Phil. Mag. 4:1171(1959).

    Google Scholar 

  10. S. Samuel, Phys. Rev. D 18:1916(1978).

    Google Scholar 

  11. D. C. Brydges and Ph. Martin, J. Stat. Phys 96:1163(1999).

    Google Scholar 

  12. R. R. Netz, and H. Orland, Eur. Phys. J. E 1:67(2000).

    Google Scholar 

  13. J. E. Mayer, J. Chem. Phys. 18:1426(1950).

    Google Scholar 

  14. G. R. Stell and J. Lebowitz, J. Chem. Phys. 49:3706(1968).

    Google Scholar 

  15. H. C. Andersen and D. Chandler, J. Chem. Phys. 53:547(1970); H. C. Andersen and D. Chandleribid. 55:1497(1971); D. Chandler and H. C. Andersen, J. Chem. Phys. 54:26(1971).

    Google Scholar 

  16. I. R. Iukhnoviskii, Sov. Phys. JETP 7:263(1958).

    Google Scholar 

  17. K. B. Eisenthal and W. G. McMillan, J. Chem. Phys. 42:3766(1965); K. B. Eisenthal and W. G. McMillanibid. 44:2542(1966).

    Google Scholar 

  18. F. H. Stillinger and R. Lovett, J. Chem. Phys. 49:1991(1968).

    Google Scholar 

  19. S. L. Carnie and D. Y. C. Chan, Chem. Phys. Lett. 77:437(1981).

    Google Scholar 

  20. K. Ma, Modern Theory of Critical Phenomena (Addison–Wesley, 1982).

  21. H. C. Andersen and D. Chandler, J. Chem. Phys. 57:1918(1972).

    Google Scholar 

  22. J.-M. Caillol, arXiv: cond-mat/0305465.

  23. J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena (Clarendon Press, Oxford, 1992).

    Google Scholar 

  24. G. Parisi, Statistical Field Theory (Addison–Wesley, 1988).

  25. J. K. Percus, in The Liquid State of Matter, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  26. N. V. Brilliantov, Phys. Rev. E 58:2628(1998).

    Google Scholar 

  27. J.-M. Caillol, Mol. Phys. 101:1617(2003).

    Google Scholar 

  28. G. Stell, in The Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964).

    Google Scholar 

  29. G. Stell, in Phase Transitions and Critical Phenomena, Vol. 5b, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1973).

    Google Scholar 

  30. A. Ciach and G. Stell, J. Mol. Phys. Liq. 87:255(2000); A. Ciach and G. StellJ. Chem. Phys. 114:382(2001); A. Ciach and G. Stellibid 114:3617(2001); A. Ciach and G. StellPhysica A 306:220(2002).

    Google Scholar 

  31. Ph. A. Martin, Rev. Mod. Phys. 60:1075(1988).

    Google Scholar 

  32. J.-M. Caillol and J.-J. Weis, J. Chem. Phys. 102:7610(1995).

    Google Scholar 

  33. B. Jancovici, in Strongly Plasma Physics, F. J. Rogers and H. E. DeWitt, eds. (Plenum, New York, 1987).

    Google Scholar 

  34. B. Jancovici, J. Stat. Phys. 80:445(1995).

    Google Scholar 

  35. J. L. Lebowitz and Ph. A. Martin, J. Stat. Phys. 34:287(1984).

    Google Scholar 

  36. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6:1181(1973).

    Google Scholar 

  37. A. Diehl, M. C. Barbosa, and Y. Levin, Phys. Rev. E 56:619(1997).

    Google Scholar 

  38. C. W. Outhwaite, in Statistical Mechanics, Vol. 2, K. Singer, ed. (The Chemical Society, London, 1975).

    Google Scholar 

  39. J.-M. Caillol, J. Phys. A: Math. Gen. 35:4189(2002).

    Google Scholar 

  40. J. T. Chayes and L. Chayes, J. Stat. Phys. 36:471(1984).

    Google Scholar 

  41. E. Trizac, Phys. Rev. E 62:R1465(2000).

    Google Scholar 

  42. L. Blum, in Theoretical Chemistry: Advances and Perspectives, Vol. 5 (Academic Press, New York, 1980).

    Google Scholar 

  43. T. Kennedy, J. Stat. Phys. 28:633(1982).

    Google Scholar 

  44. L. Onsager, J. Chem. Phys. 43:189(1939).

    Google Scholar 

  45. E. Waisman and J. L. Lebowitz, J. Chem. Phys. 56:3086(1972); E. Waisman and J. L. Lebowitzibid 56:3093(1972).

    Google Scholar 

  46. V. I. Smirnov, Linear Algebra and Group Theory (McGraw–Hill, New York, 1961).

    Google Scholar 

  47. J. C. Wheeler and D. Chandler, J. Chem. Phys. 55:1645(1971).

    Google Scholar 

  48. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54:5237(1971).

    Google Scholar 

  49. O. V. Patsahan, arXiv: cond-mat/0301039.

  50. D. Amit, Field Theory, the Renormalization Group and Critical Phenomena, 2nd edn. (World Scientific, Singapore, 1984).

    Google Scholar 

  51. J. Zinn-justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989).

    Google Scholar 

  52. I. R. Yukhnovskii, Physica A 168:999(1990).

    Google Scholar 

  53. I. R. Yukhnovskii and O. V. Patsahan, J. Stat. Phys. 81:647(1995).

    Google Scholar 

  54. G. Stell, J. Chem. Phys. 55:1485(1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caillol, JM. Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb Systems. III. Loopwise Expansion. Journal of Statistical Physics 115, 1461–1504 (2004). https://doi.org/10.1023/B:JOSS.0000028066.25728.cf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000028066.25728.cf

Navigation