Skip to main content
Log in

Self-Organized Criticality and Thermodynamic Formalism

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We develop a thermodynamic formalism for a dissipative version of the Zhang model of Self-Organized Criticality, where a parameter allows us to tune the local energy dissipation. By constructing a suitable Markov partition we define Gibbs measures (in the sense of Sinai, Ruelle, and Bowen), partition functions, and topological pressure allowing the analysis of probability distributions of avalanches. We discuss the infinite-size limit in this setting. In particular, we show that a Lee–Yang phenomenon occurs in the conservative case. This suggests new connections to classical critical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bak, C. Tang, and K. Wiesenfeld, Self organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59:381–384 (1987); P. Bak, C. Tang, and K. WiesenfeldSelf organized criticality, Phys. Rev. A. 38: 364–374 (1988).

    Google Scholar 

  2. P. Bak, How Nature Works (Springer-Verlag, 1996).

  3. H. J. Jensen, Self-organized criticality: Emergent complex behavior in physical and biological systems, in Cambridge Lecture Notes in Physics, Vol. 10 (Cambridge University Press, 1998).

  4. D. H. Meyer, The Ruelle–Araki transfer operator in classical statistical mechanics, Lecture Notes in Physik, Vol. 123 (Springer-Verlag).

  5. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  6. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions I. Theory of condensation, Phys. Rev. 87:404–409 (1952); C. N. Yang and T. D. LeeStatistical theory of equations of state and phase transitions II. Lattice gas and Ising model, Phys. Rev. 87:410–419 (1952).

    Google Scholar 

  7. R. Abe, Note on the critical behavior of Ising ferromagnets, Prog. Theor. Phys. 38(1967)

  8. M. J. Fisher, The renormalization group in the theory of critical behaviour, Rev. Mod. Phys. 46:597–616 (1974).

    Google Scholar 

  9. C. Itzykson, R. B. Pearson, and J. B. Zuber, Distribution of zeros in Ising and Gauge models, Nuclear Phys. B 220[FS8]:415–433 (1983).

    Google Scholar 

  10. M. L. Glasser, V. Privman, and L. S. Schulman, Complex-temperature-plane zeros: Scaling theory and multicritical mean-field models, Phys. Rev. B 33(1987).

  11. W. Janke and R. Kenna, The strength of first and second order phase transitions from partition function zeros, J. Stat. Phys. 102:1221–1227 (2001).

    Google Scholar 

  12. R. J. Creswick and S. Y. Kim, Finite-size scaling of the density of zeros of the partition function in first and second order transitions, Phys. Rev. E 56:2418(1997).

    Google Scholar 

  13. L. P. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou, Scaling and universality in avalanches, Phys. Rev. A 39:6524–6527 (1989).

    Google Scholar 

  14. C. Tebaldi, M. De Menech, and A. Stella, Phys. Rev. Lett. 83:3952(1999).

    Google Scholar 

  15. R. Pastor-Satorras and A. Vespignani, Anomalous scaling in the Zhang model, Eur. Phys. J. B 18:197–200 (2000)

    Google Scholar 

  16. Ph. Blanchard, B. Cessac, and T. Krüger, A dynamical systems approach for SOC models of Zhang type, J. Stat. Phys. 88:307–318 (1997).

    Google Scholar 

  17. B. Cessac, Ph. Blanchard, and T. Krueger, A dynamical system approach to self-organized criticality, in Mathematical Results in Statistical Mechanics, Marseille 1998 (Word Scientific, Singapore).

  18. Ph. Blanchard, B. Cessac, and T. Krüger, What can one learn about self-organized criticality from dynamical system theory ?, J. Stat. Phys. 98:375–404 (2000).

    Google Scholar 

  19. B. Cessac, Ph. Blanchard, and T. Krüger, Lyapunov exponents and transport in the Zhang model of self-organized criticality, Phys. Rev. E 64:016133(2001).

    Google Scholar 

  20. H. Y. Zhang, Scaling theory of self-organized criticality, Phys. Rev. Lett. 63:470–473 (1988).

    Google Scholar 

  21. Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 27:21–69 (1972)

    Google Scholar 

  22. D. Ruelle, Thermodynamic Formalism (Addison–Wesley, Reading, MA, 1978).

    Google Scholar 

  23. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math., Vol. 470 (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  24. B. Cessac and J. L. Meunier, Anomalous scaling and Lee–Yang zeroes in self-organized criticality, Phys. Rev. E 65:1–18 (2002).

    Google Scholar 

  25. D. Dhar, Phys. Rev. Lett. 64:1613(1990); D. Dhar and S. N. Majumdar, J. Phys. A 23:4333(1990); S. N. Majumdar and D. Dhar, Physica A 185:129(1992); D. Dhar and R. Ramaswamy, Phys. Rev. Lett. 63:1659(1989).

    Google Scholar 

  26. D. Sornette, A. Johansen, and I. Dornic, Mapping self-organized criticality onto criticality, J. Phys. France 5:325–335 (1995).

    Google Scholar 

  27. G. Keller, Equilibrium States in Ergodic Theory (Cambridge University Press, 1998).

  28. A. Katok and B. Hasselblatt, Introduction to Dynamical Systems Theory (Kluwer, 1996).

  29. A. Vespignani and S. Zapperi, How self-organized criticality works: A unified mean-field picture, Phys. Rev. E 57:6345(1998).

    Google Scholar 

  30. V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Lyapunov exponents of dynamical systems, Trans. Moscow Math. Soc. 19:179–210 (1968).

    Google Scholar 

  31. M. Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, London Math. Soc., Lect. Notes Series, Vol. 180 (Cambridge University Press, 1993).

  32. J. P. Eckmann and D. Ruelle, Ergodic theory of strange attractors, Rev. Mod. Phys. 57:617(1985); J. P. Eckmann, O. Kamphorst, D. Ruelle, and S. Cilliberto, Phys. Rev. A 34:4971(1986).

    Google Scholar 

  33. Eurandom conference, Longe Range Stochastic Dynamics, Eindhoven, December 2001.

  34. Ph. Flajolet, Theoretical Computer Sci. 215:371–381 (1999).

    Google Scholar 

  35. E. Seneta, Non-Negative Matrices (Allen and Unwin, London, 1973).

    Google Scholar 

  36. D. Volchenkov, Ph. Blanchard, and B. Cessac, Quantum field theory renormalization group approach to self-organized criticality: The case of random boundaries, Int. J. Mod. Phys. B 16:1171–1204 (2002).

    Google Scholar 

  37. L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett. 72:1690(1994); A. Vespignani, S. Zapperi, and L. Pietronero, Phys. Rev. E. 51:1711(1995).

    Google Scholar 

  38. K. Falconer, Techniques in Fractal Geometry (Wiley, 1997).

  39. Ph. Blanchard, B. Cessac, and S. Sequeira, in preparation.

  40. K. J. Falconer, Bounded distortion and dimension for non-conformal repellers, Math. Proc. Camb. Phil. Soc. 115:315–334 (1994).

    Google Scholar 

  41. L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Theor. Dynam. Syst. 16:871–927 (1998).

    Google Scholar 

  42. K. J. Falconer, Generalized dimensions of measures on self-affine sets, Nonlinearity 12:877–891 (1999).

    Google Scholar 

  43. M. Benaim and N. E. Karoui, Promenades aléatoires, Cours de l'école polytechnique.

  44. B. Dorfmann, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, 1999).

  45. P. Gaspard, Chaos, scattering, and statistical mechanics, in Cambridge Nonlinear Science, Series 9 (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  46. C. Beck and F. Schloegl, Thermodynamics of chaotic systems, in Cambridge Nonlinear Science, Series 4 (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  47. P. Bak and C. Tang, Critical exponents and scaling relations for self-organized critical phenomena, Phys. Rev. Lett. 60:2347–2350, (1988).

    Google Scholar 

  48. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Collection Asterisque (Société Mathématique de France, 1990), pp. 187–188.

  49. A. Barrat, A. Vespignani, and S. Zapperi, Fluctuations and correlations in sandpile models, Phys. Rev. Lett. 83:1962(1999).

    Google Scholar 

  50. F. Ledrappier and L. S. Young, The metric entropy for diffeomorphisms, Ann. Math. 122:509–574 (1985).

    Google Scholar 

  51. O. M. Sarig, Thermodynamic formalism for countable markov shifts, Ergod. Th. Dyn. Sys. 19:1565–1593 (1999).

    Google Scholar 

  52. L. S. Young, Ergodic theory of differentiable dynamical systems.

  53. C. Maes, F. Redig, E. Saada, and A. Van Moffaert, On the thermodynamic limit for a one-dimensional sandpile process, Markov Process. Related Fields 6:1–21 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cessac, B., Blanchard, P., Krüger, T. et al. Self-Organized Criticality and Thermodynamic Formalism. Journal of Statistical Physics 115, 1283–1326 (2004). https://doi.org/10.1023/B:JOSS.0000028057.16662.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000028057.16662.89

Navigation