Skip to main content
Log in

A New Approach to Noise in Quantum Mechanics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The standard way of describing noise in a quantum system consists in attaching to the system a reservoir or bath, which is assumed to be in thermal equilibrium. Subsequently the combined equation of motion is solved to second order in the interaction and by averaging the result over the bath one gets the density matrix of the system itself. However, the differential equation obtained in this way has a serious flaw, which can be attributed to the inappropriate initial condition. For this reason we here take as starting point the thermal equilibrium of the combined system; the averages and correlation functions of quantities of interest provide us with the required information about the noise. This is explicitly demonstrated on the special model of a harmonic oscillator coupled to a bath of harmonic oscillators at temperature T. The result is compared with the standard calculation and it is shown that the latter is incorrect for time intervals smaller than kT/ħ. As an example the energy fluctuations in equilibrium are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Langevin, C. R. Acad. Sci. Paris 146:530(1908).

    Google Scholar 

  2. A. van der Ziel, Noise (Prentice, Englewood Cliffs, N.J., 1954); H. Haken, Rev. Mod. Phys. 47:67(1975).

    Google Scholar 

  3. J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, 1999), p. 11. A result is useful when it leads to a publication.

  4. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56:889(1986).

    Google Scholar 

  5. D. K. C. MacDonald, Phil. Mag. 45:63and 345 (1954); D. K. C. MacDonaldPhys. Rev. 108:541(1957).

    Google Scholar 

  6. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam 1981, 1992).

    Google Scholar 

  7. P. Jung, in Unsolved Problems of Noise and Fluctuations, S. M. Berzukov, ed. (American Institute of Physics Proceedings, 2003), p. 200; B. Lindner, L. Meinhold, and L. Schimansky-Geier, ibidem, p. 443; L. H. Tang, Physica A 324:272(2003).

  8. J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968); R. Benguria and M. Kac, Phys. Rev. Lett. 46:1(1981); H. Grabert, U. Weiss, and P. Talkner, Zeits. Phys. B 55:87(1984).

    Google Scholar 

  9. A. A. Buduni, A. Karina Chattah, and M. O. Cá;ceres, J. Phys. A 32:631(1999).

    Google Scholar 

  10. R. Zwanzig, Phys. Rev. 129:486(1963)

    Google Scholar 

  11. H. Mori, Prog. Theor. Phys. 33:423(1965).

    Google Scholar 

  12. A. Kossakowski, Bull. Acad. Pol. Sci., Sèrie Math. Astr. Phys. 20:1021(1971); A. Kossakowski, Bull. Acad. Pol. Sci., Sèrie Math. Astr. Phys. 21:649(1973); A. KossakowskiRep. Math. Phys. 3:247(1972); G. Lindblad, Comm. Math. Phys. 40:147(1975); V. Gorini, A. Kossakowski, and E. C. G. Sudarshan,Comm. Math. Phys. 17:821(1976).

    Google Scholar 

  13. N. G. van Kampen, in Fundamental Problems in Statistical Mechanics, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1962), p. 173.

    Google Scholar 

  14. H. A. Lorentz, J. Inst. Metals 33:257(1925); H. A. LorentzCollected Papers VIII (Nijhoff, The Hague, 1935), p. 307.

    Google Scholar 

  15. N. G. van Kampen, Fluctuation and Noise Letters 1:C7(2001).

    Google Scholar 

  16. I. R. Senitzky, Phys. Rev. 119:670(1960)

    Google Scholar 

  17. I. R. Senitzky, Phys. Rev. 124:642(1961).

    Google Scholar 

  18. P. Hemmer, Thesis Trondheim (1959); P. Mazur and E. Braun, Physica 30:1073 (1964); P. Ullersma, Physica 32:27, 56, 74, 90 (1966).

  19. A. Suá;rez, R. Silbey, and I. Oppenheim, J. Chem. Phys. 97:5101(1992).

    Google Scholar 

  20. N. G. van Kampen, Dan. Mat. Fys. Medd. 26 (1951); U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993).

  21. A. H. Wilson, The Theory of Metals, 2nd ed. (Cambridge, 1953), p. 162.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Kampen, N.G. A New Approach to Noise in Quantum Mechanics. Journal of Statistical Physics 115, 1057–1072 (2004). https://doi.org/10.1023/B:JOSS.0000022383.06086.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000022383.06086.6c

Navigation