Skip to main content
Log in

Winding Clusters in Percolation on the Torus and the Möbius Strip

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using a simulation technique introduced recently, we study winding clusters in percolation on the torus and the Möbius strip for different aspect ratios. The asynchronous parallelization of the simulation makes very large system and sample sizes possible. Our high accuracy results are fully consistent with predictions from conformal field theory. The numerical results for the Möbius strip and the number distribution of winding clusters on the torus await theoretical explanation. To our knowledge, this study is the first of its kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman, On the number of incipient spanning clusters, Nucl. Phys. B 485:551–582 (1997).

    Google Scholar 

  2. K. Binder and D. Stauffer, Monte Carlo studies of “random” systems, in Applications of the Monte Carlo Method in Statistical Physics, 2nd ed., K. Binder, ed., Topics in Current Physics, Vol. 36 (Springer-Verlag, Berlin/Heidelberg/New York, 1987), pp. 241–275.

    Google Scholar 

  3. J. Cardy, Critical percolation in finite geometries, J. Phys. A: Math. Gen. 25:L201–L206 (1992), preprint hep-th/9111026.

    Google Scholar 

  4. J. Cardy, The number of incipient spanning clusters in two-dimensional percolation, J. Phys. A: Math. Gen. 31:L105–L110 (1998).

    Google Scholar 

  5. P. di Francesco, H. Saleur, and J. B. Zuber, Relations between the coloumb gas picture and conformal invariance of two-dimensional critical models, J. Stat. Phys. 49:57–79 (1987).

    Google Scholar 

  6. J. Hoshen and R. Kopelman, Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14:3438–3445 (1976).

    Google Scholar 

  7. C.-K. Hu and C.-Y. Lin, Universal scaling functions for numbers of percolating clusters on planar lattices, Phys. Rev. Lett. 77:8–11 (1996).

    Google Scholar 

  8. K. Kaneda and Y. Okabe, Finite-size scaling for the Ising model and the Möbius strip and the Klein bottle, Phys. Rev. Lett. 86:2134–2137 (2001).

    Google Scholar 

  9. H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys. 74:41–59 (1980).

    Google Scholar 

  10. R. Langlands, C. Pichet, P. Pouliot, and Y. Saint-Aubin, On the universality of crossing probabilities in two-dimensional percolation, J. Stat. Phys. 67:553–574 (1992).

    Google Scholar 

  11. W. T. Lu and F. Y. Wu, Ising model on nonorientable surfaces: Exact solution for the Möbius strip and the Klein bottle, Phys. Rev. E 63:026107-1-026107-9 (2001).

    Google Scholar 

  12. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer-Verlag, Berlin/Heidelberg/New York, 1966).

    Google Scholar 

  13. M. Matsumoto and T. Nishimura, Dynamic creation of pseudorandom number generators, in Monte Carlo and Quasi-Monte Carlo Methods 1998 (Springer-Verlag, Berlin/Heidelberg/New York, 1998), preprint from http://www.math.h.kyoto-u.ac.jp/∼matumoto/RAND/DC/dc.html.

    Google Scholar 

  14. B. Mendelson, Introduction to Topology (Allyn and Bacon, Inc., Boston/London/ Sydney/Toronto, 1975).

    Google Scholar 

  15. N. R. Moloney and G. Pruessner, Asynchronously parallelized percolation on distributed machines, Phys. Rev. E 67:037701-1–4 (2003), preprint cond-mat/0211240.

    Google Scholar 

  16. H. Nakanishi and H. E. Stanley, Scaling studies of percolation pheonmena in systems of dimensionality two to seven: Cluster numbers, Phys. Rev. B 22:2466–2488 (1980).

    Google Scholar 

  17. M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation, Phys. Rev. Lett. 85:4104–4107 (2000).

    Google Scholar 

  18. M. E. J. Newman and R. M. Ziff, Fast Monte Carlo algorithm for site and bond percolation, Phys. Rev. E 64:016706-1–16 (2001).

    Google Scholar 

  19. H. T. Pinson, Critical percolation on the torus, J. Stat. Phys. 75:1167–1177 (1994).

    Google Scholar 

  20. G. Pruessner and N. R. Moloney, Numerical results for crossing, spanning and wrapping in two-dimensional percolation, J. Phys. A: Math. Gen. 36:11213–11228 (2003).

    Google Scholar 

  21. D. C. Rapaport, Cluster number scaling in two-dimensional percolation, J. Phys. A: Math. Gen. 19:219–304 (1986).

    Google Scholar 

  22. R. M. Ziff, On Cardy's formula for the critical crossing probability in 2d percolation, J. Phys. A: Math. Gen. 28:1249–1255 (1995).

    Google Scholar 

  23. R. M. Ziff, Proof of crossing formula for 2d percolation, J. Phys. A: Math. Gen. 28: 6479–6480 (1995).

    Google Scholar 

  24. R. M. Ziff, C. D. Lorenz, and P. Kleban, Shape-dependent universality in percolation, Physica A 266:17–26 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruessner, G., Moloney, N.R. Winding Clusters in Percolation on the Torus and the Möbius Strip. Journal of Statistical Physics 115, 839–853 (2004). https://doi.org/10.1023/B:JOSS.0000022376.25660.7b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000022376.25660.7b

Navigation