Skip to main content
Log in

Infinite Graphs with a Nontrivial Bond Percolation Threshold: Some Sufficient Conditions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Bernoulli bond percolation on infinite graphs and we identify a class of graphs for which the critical percolation probability is strictly less than 1. The graphs in this class have to fulfill conditions stated in terms of a minimal cut set property and a logarithmic isoperimetric inequality. For the particular case of planar graphs the condition on minimal cut sets can be be replaced by the assumption that the dual of the graph is bounded degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Alexander, Percolation and minimal spanning forests in infinite graphs, Ann. Probab. 23:87–104 (1995).

    Google Scholar 

  2. E. Babson and I. Benjamini, Cut sets and normed cohomology with applications to percolation, Proc. Amer. Math. Soc. 127:589–597 (1999).

    Google Scholar 

  3. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Critical percolation on any nonamenable group has no infinite clusters, Ann. Probab. 27:1347–1356 (1999).

    Google Scholar 

  4. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Group-invariant percolation on graphs, Geom. Funct. Anal. 9:29–66 (1999).

    Google Scholar 

  5. I. Benjamini and O. Schramm, Percolation beyond ℤd, many questions and a few answers, Electr. Comm. Probab. 1:71–82 (1996).

    Google Scholar 

  6. I. Benjamini and O. Schramm, Recent progress on percolation beyond ℤd, preprint, http://www.wisdom.weizmann.ac.il/mathusers/schramm/papers/pyond-rep/.

  7. G. A. Braga, A. Procacci, and R. Sanchis, Analyticity of the d-dimensional bond percolation probability around p=1, J. Stat. Phys. 107:1267–1282 (2002).

    Google Scholar 

  8. G. R. Grimmett and A. M. Stacey, Critical probabilities for site and bond percolation models, Ann. Probab. 26:1788–1812 (1998).

    Google Scholar 

  9. G. R. Grimmett, Percolation, 2nd ed. (Springer-Verlag, New York, 1999).

    Google Scholar 

  10. G. R. Grimmett and C. M. Newman, Percolation in ∞+1 dimensions, in Disorder in Physical Systems, Oxford Sci. Publ. (Oxford Univ. Press, New York, 1990), pp. 167–190.

    Google Scholar 

  11. B. Grünbaum and G. C. Shephard, Tilings and Patterns. An Introduction, A Series of Books in the Mathematical Sciences (W. H. Freeman and Company, New York, 1989).

    Google Scholar 

  12. O. Häggström, Markov random fields and percolation on general graphs, Adv. in Appl. Probab. 32:39–66 (2000).

    Google Scholar 

  13. O. Häggström, R. H. Schonmann, and J. E. Steif, The Ising model on diluted graphs and strong amenability, Ann. Probab. 28:1111–1137 (2000).

    Google Scholar 

  14. O. Häggström, Y. Peres, and R. H. Schonmann, Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness, in Perplexing Probability Problems: Festschrift in Honor of Harry Kesten, M. Bramson and R. Durrett, eds. (Birkhäuser, Boston, 1999), pp. 69–90.

    Google Scholar 

  15. J. Jonasson, The random cluster model on a general graph and a phase transition characterization of nonamenability, Stochastic Process. Appl. 79:335–354 (1999).

    Google Scholar 

  16. J. Jonasson and J. E. Steif, Amenability and phase transition in the Ising model, J. Theoret. Probab. 12:549–559 (1999).

    Google Scholar 

  17. R. Lyons, The Ising model and percolation on trees and tree-like graphs, Comm. Math. Phys. 125:337–353 (1989).

    Google Scholar 

  18. R. Lyons, Random walks and the growth of groups, C. R. Acad. Sci. Paris Sèr. I Math. 320:1361–1366 (1995).

    Google Scholar 

  19. R. Lyons, Probabilistic aspects of infinite trees and some applications, in Progr. Probab. (Versailles, 1995), Vol. 40 (Birkhäuser, Basel, 1996), pp. 81–94.

    Google Scholar 

  20. R. Lyons, Phase transitions on nonamenable graphs. Probabilistic techniques in equilibrium and nonequilibrium statistical physics, J. Math. Phys. 41:1099–1126 (2000).

    Google Scholar 

  21. R. Muchnik and I. Pak, Percolation on Grigorchuk groups, Comm. Algebra 29:661–671 (2001).

    Google Scholar 

  22. A. Procacci, B. Scoppola, G. A. Braga, and R. Sanchis, Percolation connectivity in the highly supercritical regime, preprint.

  23. R. H. Schonmann, Percolation in ∞+1 dimensions at the uniqueness threshold, in Perplexing Problems in Probability, Festschrift in honor of Harry Kesten, M. Bramson and R. Durrett, eds. (Birkhäuser, 1999), pp. 53–67.

  24. R. H. Schonmann, Stability of infinite clusters in supercritical percolation, Probab. Theory Rel. 113:287–300 (1999).

    Google Scholar 

  25. R. H. Schonmann, Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs, Comm. Math. Phys. 219:271–322 (2001).

    Google Scholar 

  26. R. H. Schonmann, Mean-field criticality for percolation on planar non-amenable graphs, Comm. Math. Phys. 225:453–463 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procacci, A., Scoppola, B. Infinite Graphs with a Nontrivial Bond Percolation Threshold: Some Sufficient Conditions. Journal of Statistical Physics 115, 1113–1127 (2004). https://doi.org/10.1023/B:JOSS.0000022369.76414.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000022369.76414.33

Navigation