Skip to main content
Log in

Gyroscopically Stabilized Oscillators and Heat Baths

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we analyze the stability of a gyroscopic oscillator interacting with a finite- and infinite-dimensional heat bath in both the classical and quantum cases. We consider a finite gyroscopic oscillator model of a particle on a rotating disc and a particle in a magnetic field and we examine stability before and after coupling to a heat bath. The heat bath is modelled in the finite-dimensional setting by a system of independent oscillators with mass. It is shown that if the oscillator is gyroscopically stable, coupling to a sufficiently massive heat bath induces instability even in the finite-dimensional setting. The key mechanism for instability in this paper is thus not induced by damping. The meaning of these ideas in the quantum context is discussed. The model extends the exact diagonalization analysis of an oscillator and field of Ford, Lewis, and O'Connell to the gyroscopic setting. We also discuss the interesting role that damping of Landau type plays in the infinite limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Bach, J. Fröhlich, and I. Sigal, Return to equilibrium, J. Math. Phys. 41:3985–4060 (2000).

    Google Scholar 

  2. J. Baillieul and M. Levi, Constrained relative motions in rotational mechanics, Arch. Rational Mech. Anal. 115:101–135 (1991).

    Google Scholar 

  3. A. M. Bloch, Dissipation dynamics in classical and quantum conservative systems, in Mathematical Systems Theory in Biology, Communications, Computation, and Finance, J. Rosenthal and D. Gilliam, eds., (IMA, Springer Verlag, 2003), 121–156.

  4. A. M. Bloch, P. J. Hagerty, A. G. Rojo, and M. Weinstein, Classical and quantum gyroscopic instability and heat baths, in Proc. 40th IEEE Conference on Decision and Control (2001).

  5. A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, Dissipation induced instabilities, Ann. Inst. H. Poincarè Anal. Non Linèaire 11:37–90 (1994).

    Google Scholar 

  6. L. S. Brown and G. Gabrielse, Geonium theory: Physics of a single electron or ion in a Penning trap, Rev. Modern Phys. 58:233–310 (1986).

    Google Scholar 

  7. A. Caldeira and A. Leggett, Path integral approach to quantum Brownian motion, Physica A 121:587–616 (1983).

    Google Scholar 

  8. N. G. Chetaev, The Stability of Motion (Pergamon Press, New York, 1961).

    Google Scholar 

  9. J. Derezinski and V. Jaksic, Return to equilibrium for Pauli-Fierz systems, to appear in Ann. H. Poincarè (2002).

  10. J. Derezinski, V. Jaksic, and C.-A. Pillet, Perturbation theory of W*-dynamics, Liouvilleans, and KMS-states, Rev. Math. Phys. 15:447–489 (2003).

    Google Scholar 

  11. G. W. Ford, J. T. Lewis, and R. F. O'Connell, Independent oscillator model of a heat bath: Exact diagonalization of the Hamiltonian, J. Stat. Phys. 53:439–455 (1988).

    Google Scholar 

  12. P. J. Hagerty, A. M. Bloch, and M. I. Weinstein, Radiation induced instability in interconnected systems, in Proc. 38th IEEE Conference on Decision and Control (1999).

  13. P. J. Hagerty, A. M. Bloch, and M. I. Weinstein, Radiation induced instability, to appear in SIAM J. Appl. Math. (2003).

  14. W. Hahn, Stability of Motion (Springer-Verlag, New York, 1967).

    Google Scholar 

  15. V. Jaksic and C.-A. Pillet, On a model for quantum friction I: Fermi's golden rule and dynamics at zero temperature, Ann. Inst. H. Poincarè Phys. Thèor. 62:47–68 (1995).

    Google Scholar 

  16. V. Jaksic and C.-A. Pillet, Ergodic properties of the non-Markovian Langevin equation, Lett. Math. Phys. 41:1757–1780 (1997).

    Google Scholar 

  17. N. Kampen and B. U. Felderhof, Theoretical Methods in Plasma Physics (North-Holland, Amsterdam, 1967).

    Google Scholar 

  18. E. Kirr and M. I. Weinstein, Parametrically excited Hamiltonian partial differential equations, Siam J. Math. Anal. 33:16–52 (2001).

    Google Scholar 

  19. A. Komech, M. Kunze, and H. Spohn, Effective dynamics for a mechanical particle coupled to a wave field, Comm. Math. Phys. 203:1–19 (1999).

    Google Scholar 

  20. H. Lamb, On the peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc. 32:208–211 (1900).

    Google Scholar 

  21. L. Landau, On the vibrations of the electronic plasma, J. Phys. (USSR) 10:25(1946).

    Google Scholar 

  22. J. Lebowitz, Microscopic reversibility and macrosopic behavior: Physical explanations and mathematical derivations, in Lecture Notes in Physics, J. J. Brey et al., eds. (Springer-Verlag, 1994).

  23. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag, New York, 1999).

    Google Scholar 

  24. M. Merkli and I. Sigal, On time-dependent theory of quantum resonances, Comm. Math. Phys. 201:549–576 (1999).

    Google Scholar 

  25. A. Messiah, Quantenmechanik, Band 2 (de Gruyter, Berlin, 1990).

    Google Scholar 

  26. A. Messiah, Quantenmechanik, Band 1 (de Gruyter, Berlin, 1991).

    Google Scholar 

  27. J. C. Simo, D. Lewis, and J. E. Marsden, Stability of relative equilibria. I. The reduced energy-momentum method, Arch. Rational Mech. Anal. 115:15–59 (1991).

    Google Scholar 

  28. P. Smereka, Synchronization and relaxation for a class of globally coupled oscillator systems, Physica D 124:104–125 (1998).

    Google Scholar 

  29. A. Soffer and M. I. Weinstein, Nonautonomous Hamiltonians, J. Stat. Phys. 93:359–391 (1998).

    Google Scholar 

  30. A. Soffer and M. I. Weinstein, Time dependent resonance theory, Geom. Funct. Anal. 8:1086–1128 (1998).

    Google Scholar 

  31. A. Soffer and M. I. Weinstein, Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math. 136:9–74 (1999).

    Google Scholar 

  32. L. Thomson and P. G. Tait, Principles of Mechanics and Dynamics (Cambridge University Press, 1897).

  33. W. Unruh and W. Zurek, Reduction of a wave packet in quantum Brownian motion, Phys. Rev. 400:1071–1094 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, A.M., Hagerty, P., Rojo, A.G. et al. Gyroscopically Stabilized Oscillators and Heat Baths. Journal of Statistical Physics 115, 1073–1100 (2004). https://doi.org/10.1023/B:JOSS.0000022367.36305.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000022367.36305.d3

Navigation