Skip to main content
Log in

Renormalization Group and Ward Identities in Quantum Liquid Phases and in Unconventional Critical Phenomena

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

By reviewing the application of the renormalization group to different theoretical problems, we emphasize the role played by the general symmetry properties in identifying the relevant running variables describing the behavior of a given physical system. In particular, we show how the constraints due to the Ward identities, which implement the conservation laws associated with the various symmetries, help to minimize the number of independent running variables. This use of the Ward identities is examined both in the case of a stable phase and of a critical phenomenon. In the first case we consider the problems of interacting fermions and bosons. In one dimension general and specific Ward identities are sufficient to show the non-Fermi-liquid character of the interacting fermion system, and also allow to describe the crossover to a Fermi liquid above one dimension. This crossover is examined both in the absence and presence of singular interaction. On the other hand, in the case of interacting bosons in the superfluid phase, the implementation of the Ward identities provides the asymptotically exact description of the acoustic low-energy excitation spectrum, and clarifies the subtle mechanism of how this is realized below and above three dimensions. As a critical phenomenon, we discuss the disorder-driven metal-insulator transition in a disordered interacting Fermi system. In this case, through the use of Ward identities, one is able to associate all the disorder effects to renormalizations of the Landau parameters. As a consequence, the occurrence of a metal-insulator transition is described as a critical breakdown of a Fermi liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Gell-Man and F. E. Low, Phys. Rev. 95:1300(1954); N. N. Bogoliubov and P. V. Shirkov, Introduction to the Theory of Quantized Fields (Intersciences Publishers, New York, 1959); V. L. Bonch-Bruevich and S. V. Tyablikov, The Green's Function Method in Statistical Mechanics (North-Holland Publishing Company, Amsterdam, 1962).

    Google Scholar 

  2. K. G. Wilson, Phys. Rev. B 4:3174(1971)

    Google Scholar 

  3. K. G. Wilson, Phys. Rev. B 4ibid., 3184(1971).

    Google Scholar 

  4. See, e.g., Proceedings of the International School of Physics “Enrico Fermi,” Course LI, M. S. Green, ed. (Academic Press, New York, 1971).

    Google Scholar 

  5. K. G. Wilson and J. Kogut, Phys. Rep. C 12:75(1974).

    Google Scholar 

  6. A general overview and references are found, e.g., in Phase Transitions and Critical Phenomena, Vol. VI, C. Domb and M. S. Green, eds. (Academic Press, New York, 1976).

    Google Scholar 

  7. K. S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, 1976)

    Google Scholar 

  8. A. Z. Patašinskij and V. L. Pokrovskij, Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1979).

    Google Scholar 

  9. C. Di Castro and G. Jona-Lasinio, Phys. Lett. A 29:322(1969).

    Google Scholar 

  10. A. I. Larkin and D. E. Khmel'nitskii, Zh. Eksp. Teor. Fiz. 56:2087(1969). [Sov. Phys. JETP 29:1123 (1969)].

    Google Scholar 

  11. L. D. Landau, Sov. Phys. JETP 7:19(1937).

    Google Scholar 

  12. B. L. Altshuler, A. G. Aronov, D. E. Khmel'nitskii, and A. G. Larkin, in Quantum Theory of Solids, I. M. Lifshitz, ed. (MIR Publishers, Moscow, 1982); B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, M. Pollak and A. L. Efros, eds. (North-Holland, Amsterdam, 1985), p. 1; P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57:287(1985).

    Google Scholar 

  13. See, e.g., Y. Nagaoka ed., Progr. Theor. Phys. Suppl. 84:1–295 (1985).

    Google Scholar 

  14. C. Castellani and C. Di Castro, in Applications of Field Theory to Statistical Mechanics, L. Garrido, ed. (Springer-Verlag, 1985).

  15. See, e.g., Anderson Localization, Proceedings of the International Symposium, Tokio, Japan August 16–18, 1987, T. Ando and H. Fukuyama, eds. (Springer-Verlag, 1987).

  16. A. M. Finkel'stein, in Electron Liquid in Disordered Conductors, I. M. Khalatnikov, ed., Soviet Scientific Reviews, Vol. 14 (Harwood, London, 1990).

    Google Scholar 

  17. D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66:261(1994).

    Google Scholar 

  18. See, e.g., M. Schreiber Chemnitz, ed., Proceedings of the international conference LOCALIZATION 1999: Disorder and interaction in transport phenomena, Ann. Phys. (Leipzig) 8,(1999).

  19. J. Sólyom, Adv. Phys. 28:201(1979).

    Google Scholar 

  20. S. Beliaev, Sov. Phys. JETP 7:289(1958).

    Google Scholar 

  21. J. Gavoret and P. Nozières, Ann. Phys. (N.Y.) 28:349(1964).

    Google Scholar 

  22. I. E. Dzyaloshinski and A. I. Larkin, Sov. Phys. JETP 38:202(1974).

    Google Scholar 

  23. C. Di Castro and W. Metzner, Phys. Rev. Lett. 67:3852(1991); W. Metzner and C. Di Castro, Phys. Rev. B 47:16107(1993).

    Google Scholar 

  24. C. Castellani, C. Di Castro, and W. Metzner, Phys. Rev. Lett. 72:316(1994).

    Google Scholar 

  25. W. Metzner, C. Castellani, and C. Di Castro, Adv. Phys. 47:317(1998).

    Google Scholar 

  26. P. Bares and X. G. Wen, Phys. Rev. B 48:8636(1993); C. Castellani and C. Di Castro, Physica C 235–240:99(1994).

    Google Scholar 

  27. C. Castellani, S. Caprara, C. Di Castro, and A. Maccarone, Nucl. Phys. B 594:747(2001).

    Google Scholar 

  28. F. Pistolesi, Ph.D. thesis (Scuola Normale Superiore, Pisa, 1996); C. Castellani, C. Di Castro, F. Pistolesi, and G. C. Strinati, Phys. Rev. Lett. 78:1612(1997); F. Pistolesi, C. Castellani, C. Di Castro, and G. C. Strinati, to be published.

  29. G. Benfatto, in Constructive Results in Field Theory, Statistical Mechanics, and Condensed Matter Physics, V. Rivasseau, ed. (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  30. A. M. Finkel'stein, Sov. Phys. JETP 57:97(1983).

    Google Scholar 

  31. B. L. Altshuler and A. G. Aronov, Solid State Commun. 46:429(1983).

    Google Scholar 

  32. B. L. Altshuler, A. G. Aronov, and A. Yu. Zyuzin, Sov. Phys. JETP 57:889(1983).

    Google Scholar 

  33. C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B 30:527(1984).

    Google Scholar 

  34. C. Castellani, C. Di Castro, G. Forgacs, and S. Sorella, Solid State Communications 52:261(1984).

    Google Scholar 

  35. C. Castellani, C. Di Castro, P. A. Lee, M. Ma, S. Sorella, and E. Tabet, Phys. Rev. B 30:1596(1984).

    Google Scholar 

  36. A. M. Finkel'stein, Z. Phys. 56:189(1984).

    Google Scholar 

  37. A. M. Finkel'stein, Zh. Eksp. Teor. Fiz. 86:367(1984), [Sov. Phys. JETP 59:212 (1984)].

    Google Scholar 

  38. C. Castellani and C. Di Castro, Phys. Rev. B 34:5935(1986).

    Google Scholar 

  39. A. Punnoose and A. M. Finkel'stein, Phys. Rev. Lett. 88:016802(2002).

    Google Scholar 

  40. A. Z. Patašinskij and V. L. Pokrovskij, Sov. Phys. JETPibid. 23: 292 (1966).

    Google Scholar 

  41. L. P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E. A. S. Lewis, V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J. Kane, Rev. Mod. Phys. 39:395(1967); M. E. Fisher, Rep. Prog. Phys. 30:615(1967); L. P. Kadanoff, in ref. 3.

    Google Scholar 

  42. L. P. Kadanoff, Phys. (N.Y.) 2:263(1966).

    Google Scholar 

  43. C. Di Castro and G. Jona-Lasinio, in ref. 5.

  44. G. Jona-Lasinio, Proceedings of the Nobel Symposium, Vol. 24, B. Lundqvist and S. Lundqvist, eds. (Academic Press, New York, 1974), p. 38.

    Google Scholar 

  45. M. Cassandro and G. Gallavotti, Nuovo Cimento B 25:691(1975)

    Google Scholar 

  46. G. Jona-Lasinio, Nuovo Cimento 26:99(1975)

    Google Scholar 

  47. K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28:240(1972)

    Google Scholar 

  48. E. Riedel and F. J. Wegner, Z. Phys. 225:195(1969)

    Google Scholar 

  49. For a recent review see, e.g., F. J. Wegner, Phys. Rep. 348:77(2001).

    Google Scholar 

  50. G. Benfatto and G. Gallavotti, Phys. Rev. B 42:9967(1990); G. Benfatto and G. GallavottiJ. Stat. Phys. 59:541(1990); R. Shankar, Rev. Mod. Phys. 66:129(1994).

    Google Scholar 

  51. P. Nozières, Theory of Interacting Fermi Systems (Benjamin, Amsterdam, 1964); G. Baym and C. Pethick, in The Physics of Liquid and Solid Helium, K. H. Bennemann and J. H. Ketterson, eds. (Wiley, New York, 1978).

    Google Scholar 

  52. For a review see, e.g., P. W. Anderson, The Theory of Superconductivity in the High T c Cuprates (Princeton University Press, Princeton, 1997).

    Google Scholar 

  53. P. Monthoux, A. V. Balatsky, and D. Pines, Phys. Rev. B 46:14803(1992)

    Google Scholar 

  54. See, e.g., A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover Publications, New York, 1975), Section 1.3.

    Google Scholar 

  55. N. Bogoliubov, J. Phys. (Moskow) 11:23(1947).

    Google Scholar 

  56. M. Girardeau and R. Arnowitt, Phys. Rev. 113:755(1959).

    Google Scholar 

  57. N. Hugenoltz and D. Pines, Phys. Rev. 116:489(1959).

    Google Scholar 

  58. A. Nepomnyashchy and Y. Nepomnyashchy, JETP Letters 21:1(1975).

    Google Scholar 

  59. F. J. Wegner, Z. Phys. B 35:207(1979); K. B. Efetov, A. I. Larkin, and D. E. Khmel'nitskii, Sov. Phys. JETP 52:568(1980).

    Google Scholar 

  60. S. Hikami, Phys. Rev. B 24:2671(1981).

    Google Scholar 

  61. P. W. Anderson, Phys. Rev. 109:1492(1958).

    Google Scholar 

  62. E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73:251(2001).

    Google Scholar 

  63. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42:673(1979).

    Google Scholar 

  64. L. P. Gorkov, A. I. Larkin, and D. E. Khmel'nitskii, JETP Letters 30:228(1979).

    Google Scholar 

  65. B. L. Altshuler and A. G. Aronov, JETP Letters 30:514(1979).

    Google Scholar 

  66. B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett. 44:1288(1980); B. L. Altshuler, D. E. Khmel'nitskii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22:5141(1980).

    Google Scholar 

  67. B. L. Altshuler, A. G. Aronov, and D. E. Khmel'nitskii, J. Phys. C 15:7367(1982).

    Google Scholar 

  68. D. J. Thouless, Phys. Rep. 13:93(1974).

    Google Scholar 

  69. C. Castellani, C. Di Castro, G. Forgacs, and E. Tabet, Nucl. Phys. B 225:441(1983).

    Google Scholar 

  70. P. Schwab, R. Raimondi, and C. Castellani, Eur. Phys. J. B 7:175(1999).

    Google Scholar 

  71. See, e.g., ref. 54, Section 16.2.

  72. R. Raimondi, C. Castellani, and C. Di Castro, Phys. Rev. B 42:4724(1990).

    Google Scholar 

  73. C. Castellani, G. Kotliar, and P. A. Lee, Phys. Rev. Lett. 59:323(1987).

    Google Scholar 

  74. C. Di Castro, in ref. 13, p. 96.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Castro, C., Raimondi, R. & Caprara, S. Renormalization Group and Ward Identities in Quantum Liquid Phases and in Unconventional Critical Phenomena. Journal of Statistical Physics 115, 91–123 (2004). https://doi.org/10.1023/B:JOSS.0000019832.91097.0b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019832.91097.0b

Navigation