Skip to main content
Log in

Simulation of a Diatomic Liquid Using Hard Spheres Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work we demonstrate the possibility of including constraints in hard systems, using the simple case of a dimer of hard spheres, where the analytical solution exists. We make a detailed description of the model and show that the system's dynamics can be solved in a rigorous way. We also illustrate our theoretical results with some numerical calculations on a simple diatomic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. J. Alder and T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31:459–466 (1959).

    Google Scholar 

  2. D. Frenkel and J. F. Maguire, Molecular dynamics study of infinitely thin hard rods: Scaling behavior of transport properties, Phys. Rev. Lett. 47:1025–1028 (1981).

    Google Scholar 

  3. D. Frenkel and J. F. Maguire, Molecular dynamics study of dynamical properties of an assembly of infinitely thin hard rods, Mol. Phys. 49:503–541 (1983).

    Google Scholar 

  4. D. W. Rebertus and K. M. Sando, Molecular dynamics simulation of a fluid of hard spherocylinders, J. Chem. Phys. 67:2585–2590 (1977).

    Google Scholar 

  5. M. P. Allen and A. A. Imbierski, A molecular dynamics study of the hard dumb-bell systems, Mol. Phys. 60:453–473 (1987).

    Google Scholar 

  6. D. C. Rapaport, Molecular dynamics simulation of polymer chains with excluded volume, J. Phys. A: Math. Nuc. and Gen. 11:L213-L217 (1978).

    Google Scholar 

  7. D. C. Rapaport, Molecular dynamics study of a polymer chain in solution, J. Chem. Phys. 71:3299–3303 (1979).

    Google Scholar 

  8. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comp. Phys. 23:327–341 (1977).

    Google Scholar 

  9. A. Mukoyama and Y. Yoshimira, Hundreds of collisions between two hard needles, J. Phys. A: Math. Gen. 30:6667–6670 (1997).

    Google Scholar 

  10. M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Hard convex body fluids, Adv. Chem. Phys. 86:1–166 (1993).

    Google Scholar 

  11. O. Schnepp and A. Ron, Lattice dynamics and spectral line widths of α-N 2, Discussions Faraday Soc. 48:26–37 (1969).

    Google Scholar 

  12. J. Barojas, D. Levesque, and B. Quentrec, Simulation of diatomic homonuclear liquids, Phys. Rev. A 7:1092–1105 (1973).

    Google Scholar 

  13. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 1976), p. 199.

    Google Scholar 

  14. J. P. Ryckaert, G. A. Bellemans, and G. Ciccotti, The rotation-translation coupling in diatomic molecules, Mol. Phys. 44:979–996 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciccotti, G., Kalibaeva, G. Simulation of a Diatomic Liquid Using Hard Spheres Model. Journal of Statistical Physics 115, 701–714 (2004). https://doi.org/10.1023/B:JOSS.0000019823.05483.ae

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019823.05483.ae

Navigation