Skip to main content
Log in

On the Essential Features of Metastability: Tunnelling Time and Critical Configurations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Metropolis Markov chains with finite state space and transition probabilities of the form

$$P(\eta ,\eta ')=q(\eta ,\eta ')e^{- \beta [H(\eta ') - H(\eta)]_+}$$

for given energy function H and symmetric Markov kernel q. We propose a simple approach to determine the asymptotic behavior, for large β, of the first hitting time to the ground state starting from a particular class of local minima for H called metastable states. We separate the asymptotic behavior of the transition time from the determination of the tube of typical paths realizing the transition. This approach turns out to be useful when the determination of the tube of typical paths is too difficult, as for instance in the case of conservative dynamics. We analyze the structure of the saddles introducing the notion of “essentiality” and describing essential saddles in terms of “gates.” As an example we discuss the case of the 2D Ising Model in the degenerate case of integer \({\tfrac{{2j}}{h}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Alonso and R. Cerf, The three-dimensional polyominoes of minimal area, Electron. J. Combin. 3, Research Paper 27(1996).

    Google Scholar 

  2. G. Ben Arous and R. Cerf, Metastability of the three-dimensional Ising model on a torus at very low temperature, Electron. J. Probab. 1, Research Paper 10 (1996).

  3. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in stochastic dynamics of disordered mean-field models, Probab. Theory Related Fields 119:99–161 (2001).

    Google Scholar 

  4. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability and low lying spectra in reversible Markov chains, Comm. Math. Phys. 228:219–255 (2002).

    Google Scholar 

  5. A. Bovier and F. Manzo, Metastability in Glauber dynamics in the low-temperature limit: beyond exponential asymptotics, J. Stat. Phys. 107:757–779 (2002).

    Google Scholar 

  6. O. Catoni and R. Cerf, The exit path of a Markov chain with rare transitions, ESAIM Probab. Stat. 1:95–144 (1995-1997).

    Google Scholar 

  7. M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastable behaviour of stochastic dynamics: A pathwise approach, J. Stat. Phys. 35:603–634 (1984).

    Google Scholar 

  8. E. N. M. Cirillo, A note on the metastability of the Ising model: The alternate updating case, J. Stat. Phys. 106:385–390 (2002).

    Google Scholar 

  9. E. N. M. Cirillo and J. L. Lebowitz, Metastability in the two-dimensional Ising model with free boundary conditions, J. Stat. Phys. 90:211–226 (1998).

    Google Scholar 

  10. E. N. M. Cirillo and F. R. Nardi, Metastability for a stochastic dynamics with parallel heath bath updating rule, J. Stat. Phys. 110:183–217 (2003).

    Google Scholar 

  11. E. N. M. Cirillo and E. Olivieri, Metastability and nucleation for the Blume-Capel model: Different mechanism of transition, J. Stat. Phys. 83:473–554 (1996).

    Google Scholar 

  12. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer-Verlag, 1984).

  13. P. Deghampur and R. H. Schonmann, A nucleation and growth model, Probab. Theory Related Fields 107:123–135 (1997).

    Google Scholar 

  14. P. Deghampur and R. H. Schonmann, Metropolis dynamics relaxation via nucleation and growth, Comm. Math. Phys. 188:89–119 (1997).

    Google Scholar 

  15. F. den Hollander, E. Olivieri, and E. Scoppola, Metastability and nucleation for conservative dynamics. Probabilistic techniques in equilibrium and nonequilibrium statistical physics, J. Math. Phys. 41:1424–1498 (2000).

    Google Scholar 

  16. F. den Hollander, F. R. Nardi, E. Olivieri, and E. Scoppola, Droplet growth for three-dimensional Kawasaki dynamics, Probab. Theory Related Fields 125:153–194 (2003).

    Google Scholar 

  17. R. Kotecký and E. Olivieri, Droplet dynamics for asymmetric Ising model, J. Stat. Phys. 70:1121–1148 (1993).

    Google Scholar 

  18. R. Kotecký and E. Olivieri, Shape of growing droplets—A model of escape from a metastable phase, J. Stat. Phys. 75:409–507 (1994).

    Google Scholar 

  19. T. M. Liggett, Interacting Particle Systems (Springer, Berlin, 1985).

    Google Scholar 

  20. F. Manzo and E. Olivieri, Dynamical Blume-Capel model: Competing metastable states at infinite volume, J. Stat. Phys. 104:1029–1090 (2001).

    Google Scholar 

  21. F. Manzo and E. Olivieri, Relaxation patterns for competing metastable states: A nucleation and growth model. I Brazilian School in Probability (Rio de Janeiro, 1997), Markov Process. Related Fields 4:549–570 (1998).

    Google Scholar 

  22. E. J. Neves, A discrete variational problem related to Ising droplets at low temperature, J. Stat. Phys. 80:103–123 (1995).

    Google Scholar 

  23. F. R. Nardi and E. Olivieri, Low temperature stochastic dynamics for an Ising model with alternating field, Markov Process. Related Fields 2:117–166 (1996).

    Google Scholar 

  24. F. R. Nardi, E. Olivieri, and E. Scoppola, Metastability and nucleation for conservative anisotropic dynamics, in preparation.

  25. E. J. Neves and R. H. Schonmann, Critical droplets and metastability for a Glauber dynamics at very low temperature, Comm. Math. Phys. 137:209–230 (1991).

    Google Scholar 

  26. E. J. Neves and R. H. Schonmann, Behaviour of droplets for a class of Glauber dynamics at very low temperatures, Probab. Theory Related Fields 91:331–354 (1992).

    Google Scholar 

  27. E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case, J. Stat. Phys. 79:613–647 (1995).

    Google Scholar 

  28. E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case, J. Stat. Phys. 84:987–1041 (1996).

    Google Scholar 

  29. E. Olivieri and E. Scoppola, Metastability and typical exit paths in stochastic dynamics, European Congress of Mathematics, Vol. II (Budapest, 1996, Progr. Math., Vol. 169 (Birkhäuser, Basel, 1998), pp. 124–150.

    Google Scholar 

  30. O. Penrose and J. L. Lebowitz, Towards a rigorous molecular theory of metastability, in Fluctuation Phenomena, 2nd edn., E. W. Montroll and J. L. Lebowitz, eds. (North-Holland Physics Publishing, 1987).

  31. R. H. Schonmann, Slow droplet driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region, Comm. Math. Phys. 161:1–49 (1994).

    Google Scholar 

  32. E. Scoppola, Renormalization group for Markov chains and application to metastability, J. Stat. Phys. 73:83–121 (1993).

    Google Scholar 

  33. R. H. Schonmann, The pattern of escape from metastability of a stochastic Ising model, Comm. Math. Phys. 147:231–240 (1992).

    Google Scholar 

  34. R. H. Schonmann and S. Shlosman, Wulff droplets and the metastable relaxation of kinetic Ising models, Comm. Math. Phys. 194:389–462 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzo, F., Nardi, F.R., Olivieri, E. et al. On the Essential Features of Metastability: Tunnelling Time and Critical Configurations. Journal of Statistical Physics 115, 591–642 (2004). https://doi.org/10.1023/B:JOSS.0000019822.45867.ec

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019822.45867.ec

Navigation