Skip to main content
Log in

The High Temperature Region of the Viana–Bray Diluted Spin Glass Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the high temperature or low connectivity phase of the Viana–Bray model in the absence of magnetic field. This is a diluted version of the well known Sherrington–Kirkpatrick mean field spin glass. In the whole replica symmetric region, we obtain a complete control of the system, proving annealing for the infinite volume free energy and a central limit theorem for the suitably rescaled fluctuations of the multi-overlaps. Moreover, we show that free energy fluctuations, on the scale 1/N, converge in the infinite volume limit to a non-Gaussian random variable, whose variance diverges at the boundary of the replica-symmetric region. The connection with the fully connected Sherrington– Kirkpatrick model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  2. M. Mézard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of random satisfiability problems, Science 297:812–815 (2002).

    Google Scholar 

  3. S. Franz and M. Leone, Replica bounds for optimization problems and diluted spin systems, J. Stat. Phys. 111:535(2003).

    Google Scholar 

  4. M. Talagrand, The high temperature case of the K-sat problem, Probab. Theory Related Fields 119:187–212 (2001).

    Google Scholar 

  5. F. Guerra and F. L. Toninelli, The thermodynamic limit in mean field spin glass models, Comm. Math. Phys. 230:71–79 (2002).

    Google Scholar 

  6. F. Guerra, Broken replica symmetry bounds in the mean field spin glass model, Comm. Math. Phys. 233:1–12 (2003).

    Google Scholar 

  7. L. Viana and A. J. Bray, Phase diagrams for dilute spin-glasses, J. Phys. C 18:3037–3051 (1985).

    Google Scholar 

  8. I. Kanter and H. Sompolinsky, Mean-field theory of spin-glasses with finite coordination number, Phys. Rev. Lett. 58:164(1987).

    Google Scholar 

  9. D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35: 1792–1796 (1975).

    Google Scholar 

  10. F. Guerra and F. L. Toninelli, Quadratic replica coupling for the Sherrington-Kirkpatrick mean field spin glass model, J. Math. Phys. 43:3704–3716 (2002).

    Google Scholar 

  11. F. Guerra and F. L. Toninelli, Central limit theorem for fluctuations in the high temperature region of the Sherrington-Kirkpatrick spin glass model, J. Math. Phys. 43:6224–6237 (2002).

    Google Scholar 

  12. N. Creignou and H. Daude, Satisfiability threshold for random XOR-CNF formulas, Discr. Appl. Math. 96–97:41-53 (1999).

    Google Scholar 

  13. G. Semerjian and L. F. Cugliandolo, Cluster expansions in dilute systems: applications to satisfiability problems and spin glasses, Phys. Rev. E 64:036115(2001).

    Google Scholar 

  14. M. Talagrand, Mean field models for spin glasses: A first course, to appear in Proceedings of the 2000 Saint Flour Summer School in Probability.

  15. F. Comets and J. Neveu, The Sherrington-Kirkpatrick model of spin glasses and stochastic calculus: The high temperature case, Comm. Math. Phys. 166:549–564 (1995).

    Google Scholar 

  16. M. Talagrand, Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models (Springer-Verlag, 2003).

  17. F. Guerra, The cavity method in the mean field spin glass model. Functional representation of the thermodynamic variables, in Advances in Dynamical Systems and Quantum Physics, S. Albeverio et al., eds. (World Scientific, Singapore, 1995).

    Google Scholar 

  18. M. Talagrand, Exponential inequalities and replica symmetry breaking for the Sherrington- Kirkpatrick Model, Ann. Probab. 28:1018–1062 (2000).

    Google Scholar 

  19. M. Aizenman, J. Lebowitz, and D. Ruelle, Some rigorous results on the Sherrington- Kirkpatrick spin glass model, Comm. Math. Phys. 112:3–20 (1987).

    Google Scholar 

  20. R. Monasson and R. Zecchina, Statistical mechanics of the random K-satisfiability model, Phys. Rev. E 56:1357(1997).

    Google Scholar 

  21. M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. I.H.E.S. 81:73–205 (1995).

    Google Scholar 

  22. W. Rhee and M. Talagrand, Martingale inequalities and NP-complete problems, Math. Oper. Res. 12:177–181 (1987).

    Google Scholar 

  23. F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Simplest random K-satisfiability problem, Phys. Rev. E 63:026702(2001).

    Google Scholar 

  24. A. Z. Broder, A. M. Frieze, and E. Upfal, On the satisfiability and maximum satisfiability of random 3-CNF formulas, in Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, New York, 1993), pp. 322–330.

    Google Scholar 

  25. F. Guerra and F. L. Toninelli, The infinite volume limit in generalized mean field disordered models, Markov Process. Related Fields 9:195–207 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, F., Toninelli, F.L. The High Temperature Region of the Viana–Bray Diluted Spin Glass Model. Journal of Statistical Physics 115, 531–555 (2004). https://doi.org/10.1023/B:JOSS.0000019815.11115.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019815.11115.54

Navigation