Skip to main content
Log in

A Combinatorial Proof of Tree Decay of Semi-Invariants

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider finite range Gibbs fields and provide a purely combinatorial proof of the exponential tree decay of semi-invariants, supposing that the logarithm of the partition function can be expressed as a sum of suitable local functions of the boundary conditions. This hypothesis holds for completely analytical Gibbs fields; in this context the tree decay of semi-invariants has been proven via analyticity arguments. However the combinatorial proof given here can be applied also to the more complicated case of disordered systems in the so-called Griffiths' phase when analyticity arguments fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Bertini, N. Cancrini, and F. Cesi, The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. Inst. H. Poincaré Probab. Statist. 32:91–108 (2001).

    Google Scholar 

  2. L. Bertini, E. N. M. Cirillo, and E. Olivieri, Renormalization group transformations under strong mixing conditions: Gibbsianness and convergence of renormalized interactions, J. Statist. Phys. 97:831–915 (1999).

    Google Scholar 

  3. L. Bertini, E. N. M. Cirillo, and E. Olivieri, Graded cluster expansion for lattice systems, preprint (2003).

  4. L. Bertini, E. N. M. Cirillo, and E. Olivieri, Renormalization group in the uniqueness region: Weak Gibbsianity and convergence, preprint (2003).

  5. L. Bertini, E. N. M. Cirillo, and E. Olivieri, Randomly perturbed strong mixing systems: Beating Griffiths' singularity above the critical temperature, in preparation.

  6. M. Cassandro and E. Olivieri, Renormalization group and analyticity in one dimension: A proof of Dobrushin's theorem, Comm. Math. Phys. 80:255–269 (1981).

    Google Scholar 

  7. R. L. Dobrushin and S. B. Shlosman, Completely analytical Gibbs fields, Statist. Phys. and Dyn. Syst. (Birkhauser, 1985), pp. 371–403.

  8. R. L. Dobrushin and S. B. Shlosman, Completely analytical interactions constructive description, J. Statist. Phys. 46:983–1014 (1987).

    Google Scholar 

  9. M. Duneau, D. Iagolnitzer, and B. Souillard, Decrease properties of truncated correlation functions and analyticity properties for classical lattices and continuous systems, Comm. Math. Phys. 31:191–208 (1973).

    Google Scholar 

  10. M. Duneau, D. Iagolnitzer, and B. Souillard, Strong cluster properties for classical systems with finite range interaction, Comm. Math. Phys. 35:307–320 (1974).

    Google Scholar 

  11. M. Duneau and B. Souillard, Cluster properties of lattice and continuous systems, Comm. Math. Phys. 47:155–166 (1977).

    Google Scholar 

  12. J. Fröhlich and J. Z. Imbrie, Improved perturbation expansion for disordered systems: Beating Griffiths' singularities, Comm. Math. Phys. 96:145–180 (1984).

    Google Scholar 

  13. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, 2nd edn. (Springer-Verlag, New York, 1987).

    Google Scholar 

  14. R. Kotecký and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys. 103:491–498 (1986).

    Google Scholar 

  15. F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case, Comm. Math. Phys. 161:447–486 (1994).

    Google Scholar 

  16. F. Martinelli, E. Olivieri, and R. Schonmann, For 2-D lattice spin systems weak mixing implies strong mixing, Comm. Math. Phys. 165:33–47 (1994).

    Google Scholar 

  17. E. Olivieri, On a cluster expansion for lattice spin systems: A finite size condition for the convergence, J. Statist. Phys. 50:1179–1200 (1988).

    Google Scholar 

  18. E. Olivieri and P. Picco, Cluster expansion for D-dimensional lattice systems and finite volume factorization properties, J. Statist. Phys. 59:221–256 (1990).

    Google Scholar 

  19. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York/Amsterdam, 1969).

    Google Scholar 

  20. R. H. Schonmann and S. B. Shlosman, Complete analyticity for 2D Ising completed, Comm. Math. Phys. 170:453–482 (1995).

    Google Scholar 

  21. A. N. Shiryaev, Probability (Springer-Verlag, New York, 1996).

    Google Scholar 

  22. B. Simon, The Statistical Mechanics of Lattice Gases, Vol. I (Princeton University Press, Princeton, NJ, 1993).

    Google Scholar 

  23. H. Spohn, Equilibrium fluctuations for interacting Brownian particles, Comm. Math. Phys. 103:1–33 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, L., Cirillo, E.N.M. & Olivieri, E. A Combinatorial Proof of Tree Decay of Semi-Invariants. Journal of Statistical Physics 115, 395–413 (2004). https://doi.org/10.1023/B:JOSS.0000019813.58778.bf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019813.58778.bf

Navigation