Skip to main content
Log in

Exact Scaling Functions for One-Dimensional Stationary KPZ Growth

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We determine the stationary two-point correlation function of the one-dimensional KPZ equation through the scaling limit of a solvable microscopic model, the polynuclear growth model. The equivalence to a directed polymer problem with specific boundary conditions allows one to express the corresponding scaling function in terms of the solution to a Riemann–Hilbert problem related to the Painlevé II equation. We solve these equations numerically with very high precision and compare our, up to numerical rounding exact, result with the prediction of Colaiori and Moore(1) obtained from the mode coupling approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Colaiori and M. A. Moore, Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension, Phys. Rev. E 65:017105(2002).

    Google Scholar 

  2. M. Kardar, G. Parisi, and Y. Z. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889–892 (1986).

    Google Scholar 

  3. D. Forster, D. R. Nelson, and M. J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16:732–749 (1977).

    Google Scholar 

  4. H. van Beijeren, R. Kutner, and H. Spohn, Excess noise for driven diffusive systems, Phys. Rev. Lett. 54:2026–2029 (1985).

    Google Scholar 

  5. M. Prähofer and H. Spohn, Current fluctuations for the totally asymmetric simple exclusion process, in In and Out of Equilibrium, V. Sidoravicius, ed., Vol. 51, Progress in Probability (Birkhäuser, Boston, 2002), pp. 185–204.

    Google Scholar 

  6. M. Prähofer and H. Spohn, Universal distributions for growth processes in one dimension and random matrices, Phys. Rev. Lett. 84:4882–4885 (2000).

    Google Scholar 

  7. M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys. 108:1071–1106 (2002).

    Google Scholar 

  8. E. Frey, U. C. Täuber, and T. Hwa, Mode-coupling and renormalization group results for the noisy Burgers equation, Phys. Rev. E 53:4424–4438 (1996).

    Google Scholar 

  9. T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, The spin-spin correlation function of the 2-dimensional Ising model: Exact results in the scaling region, Phys. Rev. B 13:316–374 (1976).

    Google Scholar 

  10. T. Spencer, A mathematical approach to universality in two dimensions, Physica A 279:250–259 (2000).

    Google Scholar 

  11. C. A. Tracy and H. Widom, Level spacing distribution and the Airy kernel, Commun. Math. Phys. 159:151–174 (1994).

    Google Scholar 

  12. J. Baik and E. M. Rains, Limiting distributions for a polynuclear growth model with external sources, J. Stat. Phys. 100:523–541 (2000).

    Google Scholar 

  13. J. Baik, Riemann-Hilbert problems for last passage percolation, math.PR/0107079, (2001).

  14. V. Periwal and D. Shevitz, Unitary-matrix models as exactly solvable string theories, Phys. Rev. Lett. 64:1326–1329 (1990).

    Google Scholar 

  15. T. Seppäläinen, A microscopic model for the Burgers equation and longest increasing subsequences, Electronic J. Prob. 1:1–51 (1996).

    Google Scholar 

  16. G. Szegö, Orthogonal Polynomials (American Mathematical Society, Providence, Rhode Island, 1967).

    Google Scholar 

  17. M. Hisakado, Unitary matrix models and Painlevé III, Mod. Phys. Lett. A 11:3001–3010 (1996).

    Google Scholar 

  18. C. A. Tracy and H. Widom, Random unitary matrices, permutations and Painlevé, Commun. Math. Phys. 207:665–685 (1999).

    Google Scholar 

  19. A. Borodin, Discrete gap probabilities and discrete Painlevé equations, Duke Math. J. 117:489–542, (2003).

    Google Scholar 

  20. M. E. H. Ismail and N. S. Witte, Discriminants and functional equations for polynomials orthogonal on the unit circle, J. Approx. Th. 110:200–228 (2001).

    Google Scholar 

  21. S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rat. Mech. Anal. 73:31–51 (1980).

    Google Scholar 

  22. J. Baik, P. Deift, and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12:1119(1999).

    Google Scholar 

  23. M. Prähofer and H. Spohn, Statistical self-similarity of one-dimensional growth processes, Physica A 279:342–352 (2000).

    Google Scholar 

  24. J. Baik and E. M. Rains, Algebraic aspects of increasing subsequences, Duke Math. J. 109:1–65 (2001).

    Google Scholar 

  25. C. A. Tracy and H. Widom, private communication (1999).

  26. M. Abramowitz and I. A. Stegun, eds., Pocketbook of Mathematical Functions (Verlag Harri Deutsch, Thun-Frankfurt am Main, 1984).

    Google Scholar 

  27. D. Barton, I. M. Willers, and R. V. M. Zahar, Taylor series methods for ordinary differential equations—An evaluation, in Mathematical Software, John Rice, ed. (Academic Press, New York, 1971), pp. 369–390.

    Google Scholar 

  28. S. Chatterjee, MPFUN++, a C++-based multiprecision system, http://www.cs. unc.edu/Research/HARPOON/mpfun++/ (2000).

  29. M. Prähofer and H. Spohn, The scaling function g(y), http://www-m5.ma.tum.de/KPZ/ (2002).

  30. T. Hwa and E. Frey, Exact scaling function of interface growth dynamics, Phys. Rev. A 44:R7873-R7876 (1991).

    Google Scholar 

  31. L.-H. Tang, Steady-state scaling function of the (1+1)-dimensional single-step model, J. Stat. Phys. 67:819–826 (1992).

    Google Scholar 

  32. H. C. Fogedby, Scaling function for the noisy Burgers equation in the soliton approximation, Europhys. Lett. 56:492–498 (2001).

    Google Scholar 

  33. M. Myllys, J. Maunuksela, M. Alava, J. Merikoski, and J. Timonen, Kinetic roughening in slow combustion of paper, Phys. Rev. E 64:1–12 (2001).

    Google Scholar 

  34. F. Colaiori and M. A. Moore, Stretched exponential relaxation in the mode-coupling theory for the Kardar-Parisi-Zhang equation, Phys. Rev. E 63:057103(2001).

    Google Scholar 

  35. L.-H. Gwa and H. Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett 68:725–728 (1992).

    Google Scholar 

  36. L.-H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46:844–854 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prähofer, M., Spohn, H. Exact Scaling Functions for One-Dimensional Stationary KPZ Growth. Journal of Statistical Physics 115, 255–279 (2004). https://doi.org/10.1023/B:JOSS.0000019810.21828.fc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000019810.21828.fc

Navigation