Skip to main content
Log in

Lyapunov Instability of the Boundary-Driven Chernov–Lebowitz Model for Stationary Shear Flow

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We report on the computation of full Lyapunov spectra of the boundary-driven Chernov–Lebowitz model for stationary planar shear flow. The Lyapunov exponents are calculated with a recently developed formalism for systems with elastic hard collisions. Although the Chernov–Lebowitz model is strictly energy conserving, any phase-space volume is subjected to a contraction due to the reflection rules of the hard disks colliding with the walls. Consequently, the sum of Lyapunov exponents is negative. As expected for an inhomogeneously driven system, the Lyapunov spectra do not obey the conjugate pairing rule. The external driving makes the system less chaotic, which is reflected in a decrease of the Kolmogorov–Sinai entropy if the driving is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London (1990).

    Google Scholar 

  2. W. G. Hoover, Computational Statistical Mechanics, Elsevier, Amsterdam (1991).

    Google Scholar 

  3. H. A. Posch and W. G. Hoover, Phys. Rev. A 39:2175 (1989).

    Google Scholar 

  4. W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst, and B. Moran, Phys. Rev. A 22:1690 (1980).

    Google Scholar 

  5. D. J. Evans and G. P. Morriss, Phys. Rev. A 30:1528 (1984).

    Google Scholar 

  6. H. A. Posch, W. G. Hoover, and B. L. Holian, Ber. Bunsenges. Phys. Chem. 94:250 (1990).

    Google Scholar 

  7. N. I. Chernov and J. L. Lebowitz, Phys. Rev. Lett. 75:2831 (1995); and J. Stat. Phys. 86:(1997).

    Google Scholar 

  8. V. I. Oseledec, Trans. Moscow Math. Soc. 19:197 (1968).

    Google Scholar 

  9. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. A 42:5990 (1990).

    Google Scholar 

  10. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 53:R5545 (1996).

    Google Scholar 

  11. J. Kaplan and J. A. Yorke, in Functional Differential Equations and Approximation of Fixed Points, edited by H. O. Peitgen and H. O. Walther, Springer Verlag, Heidelberg (1979).

    Google Scholar 

  12. G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Meccanica 15:9 (1980).

    Google Scholar 

  13. Ch. Dellago, H. A. Posch, and W. G. Hoover, Phys. Rev. E. 53:1485 (1996).

    Google Scholar 

  14. F. J. Vesely, Computational Physics, An Introduction, Plenum Press, New York (1994).

    Google Scholar 

  15. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford (1987).

    Google Scholar 

  16. H. A. Posch and W. G. Hoover, in Molecular Liquids: New perspectives in Physics and Chemistry, edited by J. J. Teixeira-Dias, NATO ASI 378B, 527, Kluwer Academic Publishers (1992).

  17. Ch. Dellago, L. Glatz, and H. A. Posch, Phys. Rev. E. 52:4817 (1995).

    Google Scholar 

  18. W. G. Hoover and H. A. Posch, Phys. Rev. E. 49:1913 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellago, C., Posch, H.A. Lyapunov Instability of the Boundary-Driven Chernov–Lebowitz Model for Stationary Shear Flow. Journal of Statistical Physics 88, 825–842 (1997). https://doi.org/10.1023/B:JOSS.0000015174.26700.7e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000015174.26700.7e

Navigation