Skip to main content
Log in

An Algorithm-Independent Definition of Damage Spreading—Application to Directed Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a general definition of damage spreading in a pair of models. Using this general framework, one can define damage spreading in an objective manner that does not depend on the particular dynamic procedure that is being used. The formalism can be used for any spin-model or cellular automaton, with sequential or parallel update rules. At this point we present its application to the Domany–Kinzel cellular automaton in one dimension, this being the simplest model in which damage spreading has been found and studied extensively. We show that the active phase of this model consists of three subphases characterized by different damage-spreading properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Kauffman, J. Theor. Biol. 22:437 (1969).

    Google Scholar 

  2. M. Creutz, Ann. Phys. 167:62 (1986).

    Google Scholar 

  3. H. Stanley, D. Stauffer, J. Kertész, and H. Herrmann, Phys. Rev. Lett. 59:2326 (1987).

    Google Scholar 

  4. B. Derrida and G. Weisbuch, Europhys. Lett. 4:657 (1987).

    Google Scholar 

  5. A. M. Mariz, H. J. Herrmann, and L. de Arcangelis, J. Stat. Phys. 59:1043 (1990).

    Google Scholar 

  6. N. Jan and L. de Arcangelis, Ann. Rev. Comp. Phys. (D. Stauffer, ed.), Vol. 1, p. 1 (World Scientific, Singapore, 1994).

    Google Scholar 

  7. H. Hinrichsen and E. Domany, Phys. Rev. E (in press).

  8. E. Domany and W. Kinzel, Phys. Rev. Lett. 53:447 (1984).

    Google Scholar 

  9. M. L. Martins, H. F. Verona de Resende, C. Tsallis, and A. C. N. de Magalhaes, Phys. Rev. Lett. 66:2045 (1991).

    Google Scholar 

  10. G. F. Zebende and T. J. P. Penna, J. Stat. Phys. 74:1273 (1994).

    Google Scholar 

  11. M. L. Martins, G. F. Zebende, T. J. P. Penna, and C. Tsallis, J. Phys. A: Math. Gen. 27:1 (1994).

    Google Scholar 

  12. H. Rieger, A. Schadschneider, and M. Schreckenberg, J. Phys. A: Math. Gen. 27:L423 (1994).

    Google Scholar 

  13. P. Grassberger, J. Stat. Phys. 79:13 (1995).

    Google Scholar 

  14. G. A. Kohring and M. Schreckenberg, J. Phys. I (France) 2:2033 (1992).

    Google Scholar 

  15. F. Bagnoli, J. Stat. Phys. 85:151 (1996).

    Google Scholar 

  16. T. Tomé, Physica A 212:99 (1992).

    Google Scholar 

  17. J. W. Essam, J. Phys. A: Math. Gen. 22:4927 (1989).

    Google Scholar 

  18. R. Dickman and A. Y. Tertyakov, Phys. Rev. E 52:3218 (1995).

    Google Scholar 

  19. S. C. Glotzer, P. H. Poole, and N. Jan, J. Stat. Phys. 68, 895 (1992).

    Google Scholar 

  20. H. K. Janssen, Z. Phys. B 42:151 (1981).

    Google Scholar 

  21. P. Grassberger, Z. Phys. B 47:365 (1982).

    Google Scholar 

  22. M. H. Kim and H. Park, Phys. Rev. Lett. 73:2579 (1994).

    Google Scholar 

  23. R. Dickman and I. Jensen, Phys. Rev. Lett. 67:2391 (1991).

    Google Scholar 

  24. J. W. Essam, K. De'Bell, J. Adler, and F. M. Bhatti, Phys. Rev. B 33:1982 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinrichsen, H., Weitz, J.S. & Domany, E. An Algorithm-Independent Definition of Damage Spreading—Application to Directed Percolation. Journal of Statistical Physics 88, 617–636 (1997). https://doi.org/10.1023/B:JOSS.0000015165.83255.b7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000015165.83255.b7

Navigation