Skip to main content
Log in

Critical Behavior of the Kramers Escape Rate in Asymmetric Classical Field Theories

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce an asymmetric classical Ginzburg–Landau model in a bounded interval, and study its dynamical behavior when perturbed by weak spatiotemporal noise. The Kramers escape rate from a locally stable state is computed as a function of the interval length. An asymptotically sharp second-order phase transition in activation behavior, with corresponding critical behavior of the rate prefactor, occurs at a critical length ℓ c , similar to what is observed in symmetric models. The weak-noise exit time asymptotics, to both leading and subdominant orders, are analyzed at all interval lengthscales. The divergence of the prefactor as the critical length is approached is discussed in terms of a crossover from non-Arrhenius to Arrhenius behavior as noise intensity decreases. More general models without symmetry are observed to display similar behavior, suggesting that the presence of a “phase transition” in escape behavior is a robust and widespread phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. J. Garcí;a-Ojalvo and J. M. Sancho, Noise in Spatially Extended Systems (Springer, New York/Berlin, 1999).

    Google Scholar 

  2. J. S. Langer, Ann. Phys. 41:108(1967). See also M.Büttiker and R.Landauer, Phys.Rev. Lett. 43 :1453 (1979); Phys.Rev.A 23 :1397 (1981)

    Google Scholar 

  3. H.-B. Braun, Phys. Rev. Lett. 71:3557(1993).

    Google Scholar 

  4. E. D. Boerner and H. N. Bertram, IEEE Trans. Magnetics 34:1678(1998).

    Google Scholar 

  5. G. Brown, M. A. Novotny, and P. A. Rikvold, J. Appl. Phys. 87:4792(2000).

    Google Scholar 

  6. U. Bisang and G. Ahlers, Phys. Rev. Lett. 80:3061(1998); Y. Tu, Phys. Rev. E 56:R3765(1997).

    Google Scholar 

  7. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65:851(1993).

    Google Scholar 

  8. A. M. Dikandé, ICTP preprint IC9730 (1997).

  9. D. A. Gorokhov and G. Blatter, Phys. Rev. B 56:3130(1997). The authors find a crossover from a classical, thermally activated regime to a quantum tunneling regime.

    Google Scholar 

  10. J. Buerki, C. Stafford, and D. L. Stein, in preparation.

  11. S. Coleman, Phys. Rev. D 15:2929(1977); C. G. Callan, Jr. and S. Coleman, Phys. Rev. D 16:1762 (1977).

    Google Scholar 

  12. I. Affleck, Phys. Rev. Lett. 46:388(1981). Crossover from classical activation to quantum tunneling is considered here also.

    Google Scholar 

  13. K. L. Frost and L. G. Yaffe, Phys. Rev. D 59:065013–1(1999).

    Google Scholar 

  14. L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981), Chap. 29.

    Google Scholar 

  15. W. G. Faris and G. Jona-Lasinio, J. Phys. A 15:3025(1982).

    Google Scholar 

  16. F. Martinelli, E. Olivieri, and E. Scoppola, J. Stat. Phys. 55:477(1989).

    Google Scholar 

  17. E. M. Chudnovsky, Phys. Rev. A 46:8011(1992).

    Google Scholar 

  18. A. J. McKane and M. B. Tarlie, J. Phys. A 28:6931(1995).

    Google Scholar 

  19. A. N. Kuznetsov and P. G. Tinyakov, Phys. Lett. B 406:76(1997).

    Google Scholar 

  20. R. S. Maier and D. L. Stein, Phys. Rev. Lett. 87:270601–1(2001).

    Google Scholar 

  21. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62:251(1990).

    Google Scholar 

  22. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).

    Google Scholar 

  23. F. Moss and P. V. E. McClintock, eds., Theory of Continuous Fokker-Planck Systems (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  24. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. (Cambridge University Press, Cambridge, 1927), Section 23.71.

    Google Scholar 

  25. H. Li and D. Kusnezov, Phys. Rev. Lett. 83:1283(2000).

    Google Scholar 

  26. R. S. Maier, Lamé Polynomials, the Lamé Dispersion Relation, and Hyperelliptic Reduction, in preparation.

  27. R. S. Maier and D. L. Stein, in Noise in Complex Systems and Stochastic Dynamics, L. Schimansky-Geier, D. Abbott, A. Neiman, and C. Van den Broeck, eds., SPIE Proceedings Series, v. 5114, (2003), pp. 67–78.

  28. R. S. Maier and D. L. Stein, Phys. Rev. Lett. 71:1783(1993).

    Google Scholar 

  29. R. S. Maier and D. L. Stein, J. Stat. Phys. 83:291(1996).

    Google Scholar 

  30. R. S. Maier and D. L. Stein, in preparation.

  31. R. S. Maier and D. L. Stein, Phys. Rev. Lett. 85:1358(2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, D.L. Critical Behavior of the Kramers Escape Rate in Asymmetric Classical Field Theories. Journal of Statistical Physics 114, 1537–1556 (2004). https://doi.org/10.1023/B:JOSS.0000013968.89846.1c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000013968.89846.1c

Navigation