Skip to main content
Log in

Existence and Convergence to Equilibrium of a Kinetic Model for Cometary Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A kinetic equation with a relaxation time model for wave-particle collisions is considered. Similarly to the BGK-model of gas dynamics, it involves a projection onto the set of equilibrium distributions, nonlinearly dependent on moments of the distribution function. An earlier existence result is extended to bounded domains with reflecting boundaries and to initial conditions permitting vacuum regions. The long time behaviour is investigated. Convergence on compact time intervals (shifted to infinity) to the set of equilibrium solutions is proven. The set of smooth equilibrium solutions is computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Arkeryd and A. Nouri, Boltzmann asymptotics with diffuse reflection boundary conditions, Monatsh. Math. 123:285–298 (1997).

    Google Scholar 

  2. R. Beals and V. Protopopescu, Abstract time-dependent transport equations, J. Math. Anal. Appl. 121:370–405 (1987).

    Google Scholar 

  3. C. Cercignani, Equilibrium States and trend to Equilibrium in a Gas According to the Boltzmann Equation, Rendi. Mat. Appl. 10:77–95 (1990).

    Google Scholar 

  4. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer, New York, 1994).

    Google Scholar 

  5. P. Degond and P. F. Peyrard, Un modè;le de collisions ondes-particules en physique des plasmas: application à la dynamique des gaz, C. R. Acad. Sci. Paris 323:209–214 (1996).

    Google Scholar 

  6. P. Degond, J. L. Lopez, and P. F. Peyrard, On the macroscopic dynamics induced by a model wave-particle collision operator, J. Cont. Mech. Therm. 10:153–178 (1998).

    Google Scholar 

  7. P. Degond, J. L. Lopez, F. Poupaud, and C. Schmeiser, Existence of solutions of a kinetic equation modelling cometary flows, J. Stat. Phys. 96:361–376 (1999).

    Google Scholar 

  8. L. Desvillettes, Convergence to equilibrium in large time for Boltzmann and B.G.K. equations, Arch. Rat. Mech. Analysis 110:73–91 (1990).

    Google Scholar 

  9. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation, Comm. Pure Appl. Math. 54:1–42 (2001).

    Google Scholar 

  10. L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, preprint (2003).

  11. J. Earl, J. R. Jokipii, and G. Morfill, Cosmic ray viscosity, The Astrophysical Journal 331:L91(1988).

    Google Scholar 

  12. K. Fellner, L. Neumann, and C. Schmeiser, Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, to appear in Monatsh. Math.(2003).

  13. K. Fellner and C. Schmeiser, Equilibrium distributions of a kinetic equation modelling cometary flows and special solutions of 3D Euler equation, in preparation.

  14. F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 74:110–125 (1988).

    Google Scholar 

  15. S. Kaniel and M. Shinbrot, The Boltzmann equation. I, uniqueness and local existence, Commun. Math. Phys. 58:65–84 (1978).

    Google Scholar 

  16. B. Perthame, Global existence to the BGK model of Boltzmann equation, J. Diff. Equs. 82:191–205 (1989).

    Google Scholar 

  17. B. Perthame and M. Pulvirenti, Weighted L∞; Bounds and Uniqueness for the Boltzmann BGK Model, Arch. Rat. Mech. Anal. 125:289–295 (1993).

    Google Scholar 

  18. L. L. Williams and J. R. Jokipii, Viscosity and inertia in cosmic-ray transport: effects of an average magnetic field, The Astrophysical Journal 371:639–647 (1991).

    Google Scholar 

  19. L. L. Williams and J. R. Jokipii, A single-fluid, self-consistent formulation of fluid dynamics and particle transport, The Astrophysical Journal 417:725–734 (1993).

    Google Scholar 

  20. L. L. Williams, N. Schwadron, J. R. Jokipii, and T. I. Gombosi, A unified transport equation for both cosmic rays and thermal particles, The Astrophysical Journal 405:L79–L81 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellner, K., Poupaud, F. & Schmeiser, C. Existence and Convergence to Equilibrium of a Kinetic Model for Cometary Flows. Journal of Statistical Physics 114, 1481–1499 (2004). https://doi.org/10.1023/B:JOSS.0000013956.08390.b1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000013956.08390.b1

Navigation