Skip to main content
Log in

On Two-Temperature Problem for Harmonic Crystals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the dynamics of a harmonic crystal in d dimensions with n components, d,n≥1. The initial date is a random function with finite mean density of the energy which also satisfies a Rosenblatt- or Ibragimov–Linnik-type mixing condition. The random function is translation-invariant in x 1,...,x d−1 and converges to different translation-invariant processes as x d →±∞, with the distributions μ ±. We study the distribution μ t of the solution at time \(t \in \mathbb{B}\). The main result is the convergence of μ t to a Gaussian translation-invariant measure as t→∞. The proof is based on the long time asymptotics of the Green function and on Bernstein's “room-corridor” argument. The application to the case of the Gibbs measures μ ±=g ± with two different temperatures T ± is given. Limiting mean energy current density is −(0,...,0,C(T +T )) with some positive constant C>0 what corresponds to Second Law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Boldrighini, A. Pellegrinotti, and L. Triolo, Convergence to stationary states for infinite harmonic systems, J. Stat. Phys. 30:123–155 (1983).

    Google Scholar 

  2. F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, Fourier law: A challenge to theorists, in Mathematical Physics 2000, A. Fokas et al., eds. Imperial College Press, London, 2000), pp. 128–150, arXiv: math-ph/0002052.

    Google Scholar 

  3. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory (Springer, New York, 1981).

    Google Scholar 

  4. R. L. Dobrushin and Yu. M. Suhov, On the problem of the mathematical foundation of the Gibbs postulate in classical statistical mechanics, in Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol.80 (Springer-Verlag, Berlin, 1978), pp. 325–340.

    Google Scholar 

  5. T. V. Dudnikova and A. I. Komech, Ergodic properties of hyperbolic equations with mixing, Theory Probab. Appl. 41:436–448 (1996).

    Google Scholar 

  6. T. V. Dudnikova, Stabilization of space-time statistical solutions of the KleinüGordon equation, Russian J. Math. Phys. 5:176–188 (1997).

    Google Scholar 

  7. T. V. Dudnikova, A. I. Komech, E. A. Kopylova, and Yu. M. Suhov, On convergence to equilibrium distribution, I. The KleinüGordon equation with mixing, Commun. Math. Phys. 225:1–32 (2002).

    Google Scholar 

  8. T. V. Dudnikova, A. I. Komech, N. E. Ratanov, and Yu. M. Suhov, On convergence to equilibrium distribution, II. The wave equation in odd dimensions, with mixing, J. Stat. Phys. 108:1219–1253 (2002).

    Google Scholar 

  9. T. V. Dudnikova, A. I. Komech, and H. Spohn, On a two-temperature problem for wave equation, Markov Process. Related Fields 8:43–80 (2002).

    Google Scholar 

  10. T. Dudnikova, A. Komech, and H. Spohn, On convergence to statistical equilibrium for harmonic crystal, accepted to J. Math. Phys. (2003), ArXiv: math-ph/0210039.

  11. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys. 201:657–697 (1999).

    Google Scholar 

  12. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Stat. Phys. 95:305–331 (1999).

    Google Scholar 

  13. M. V. Fedoryuk, The stationary phase method and pseudodifferential operators, Russian Math. Surveys 26:65–115 (1971).

    Google Scholar 

  14. J. Farmer, S. Goldstein, and E. R. Speer, Invariant states of a thermally conducting barrier, J. Stat. Phys. 34:263–277 (1984).

    Google Scholar 

  15. F. Fidaleo and C. Liverani, Ergodic properties for a quantum nonlinear dynamics, J. Stat. Phys. 97:957–1009 (1999).

    Google Scholar 

  16. V. Jakšić and C.-A. Pillet, Ergodic properties of classical dissipative systems. I, Acta Math. 181:245–282 (1998).

    Google Scholar 

  17. I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971).

    Google Scholar 

  18. E. A. Kopylova, Stabilization of statistical solutions of the KleinüGordon equation, Moscow Univ. Math. Bull. 41:72–75 (1986).

    Google Scholar 

  19. O. E. Lanford, III and J. L. Lebowitz, Time evolution and ergodic properties of harmonic systems, in Dynamical Systems, Theory, and Applications, Lecture Notes in Physics, Vol.38 (Springer-Verlag, Berlin, 1975).

    Google Scholar 

  20. H. Nakazawa, On the lattice thermal conduction, Progr. Theoret. Phys. (Suppl.) 45:231–262 (1970).

    Google Scholar 

  21. V. V. Petrov, Limit Theorems of Probability Theory (Clarendon Press, Oxford, 1995).

    Google Scholar 

  22. M. Reed and B. Simon, Methods of Modern Mathematical Physics III: Scattering Theory (Academic Press, New York, 1979).

    Google Scholar 

  23. L. Rey-Bellet and L. E. Thomas, Exponential convergence to non-equilibrium stationary states in classical statistical mechanics, Commun. Math. Phys. 225:305–329 (2002).

    Google Scholar 

  24. Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a harmonic crystal in a stationary nonequilibrium state, J. Math. Phys. 8:1073–1078 (1967).

    Google Scholar 

  25. M. A. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A. 42:43–47 (1956).

    Google Scholar 

  26. A. G. Shuhov and Yu. M. Suhov, Ergodic properties of groups of the Bogoliubov transformations of CAR C*-algebras, Ann. Physics 175:231–266 (1987).

    Google Scholar 

  27. H. Spohn and J. Lebowitz, Stationary non-equilibrium states of infinite harmonic systems, Comm. Math. Phys. 54:97–120 (1977).

    Google Scholar 

  28. M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics (Kluwer Academic, Dordrecht, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudnikova, T.V., Komech, A.I. & Mauser, N.J. On Two-Temperature Problem for Harmonic Crystals. Journal of Statistical Physics 114, 1035–1083 (2004). https://doi.org/10.1023/B:JOSS.0000012516.89488.20

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000012516.89488.20

Navigation