Skip to main content
Log in

Non-Analyticity and the van der Waals Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the analyticity properties of the free energy f γ (m) of the Kac model at points of first order phase transition, in the van der Waals limit γ↘0. We show that there exists an inverse temperature β 0 and γ 0>0 such that for all ββ 0 and for all γ∈(0,γ 0), f γ (m) has no analytic continuation along the path mm * (m * denotes spontaneous magnetization). The proof consists in studying high order derivatives of the pressure p γ (h), which is related to the free energy f γ (m) by a Legendre transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of PirogovüSinai theory, Commun. Math. Phys. 101:501–538 (1985).

    Google Scholar 

  2. J. Bricmont and J. Slawny, Phase transitions in systems with a finite number of dominant ground states, J. Statist. Phys. 54:89–161 (1989).

    Google Scholar 

  3. A. Bovier and M. Zahradník, The low-temperature phases of KacüIsing models, J. Statist. Phys. 87:311–332 (1997).

    Google Scholar 

  4. A. Bovier and M. Zahradník, PirogovüSinai theory for long range spin systems, Markov Process. Related Fields 8:443–478 (2002).

    Google Scholar 

  5. M. Cassandro and E. Presutti, Phase transitions in ising systems with long but finite range interactions, Markov Process. Related Fields 2:241–262 (1996).

    Google Scholar 

  6. E. I. Dinaburg and Ya. G. Sinai, Contour models with interactions and applications, Selecta Math. Sovietica 7:291–315 (1988).

    Google Scholar 

  7. M. E. Fisher, The theory of condensation and the critical point, Physics 3:255–283 (1967).

    Google Scholar 

  8. S. Friedli and C.-E. Pfister, On the singularity of the free energy at first order phase transition, to appear in Commun. Math. Phys. (2003).

  9. R. B. Griffiths, General correlation inequalities in ising ferromagnets I & II, J. Math. Phys. 8:478–483 (1967). D. G. Kelly and S. Sherman, General griffiths inequalities on correlations in ising ferromagnets, J. Math. Phys. 9:466–484 (1968).

    Google Scholar 

  10. S. N. Isakov, Nonanalytic features of the first order phase transition in the ising model, Commun. Math. Phys. 95:427–443 (1984).

    Google Scholar 

  11. S. N. Isakov, Phase diagrams and singularity at the point of a phase transition of the first kind in lattice gas models, Teoret. Mat. Fiz. 71:426–440 (1987).

    Google Scholar 

  12. K. Kuratowski, Topology, Vols. 1 and 2 (Academic Press, 1968).

  13. M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, On the van der Waals theory of the vapor-liquid equilibrium, J. Math. Phys. 4:216–228 (1963).

    Google Scholar 

  14. J. S. Langer, Theory of the condensation point, Ann. Physics 41:108–157 (1967).

    Google Scholar 

  15. J. L. Lebowitz, A. E. Mazel, and E. Presutti, Liquid-vapor phase transitions for systems with finite range interactions, J. Statist. Phys. 94:955–1025 (1999).

    Google Scholar 

  16. J. L. Lebowitz and O. Penrose, Rigorous treatment of the van ver WaalsüMaxwell theory of the liquid-vapor transition, J. Math. Phys. 7:98–113 (1966).

    Google Scholar 

  17. C. N. Yang and T. D. Lee, Statistical theory of state and phase transition I & II, Phys. Rev. 87:404–419 (1952).

    Google Scholar 

  18. C.-E. Pfister, Large deviations and phase separation in the two dimensional ising model, Helv. Phys. Acta 64:953–1054 (1991).

    Google Scholar 

  19. E. Presutti, From Statistical Mechanics to Continuum Mechanics, Lecture Notes (Max Planck Institute, Leipzig, 1999).

    Google Scholar 

  20. S. A. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Teoret. Mat. Fiz. 26:61–76 (1976).

    Google Scholar 

  21. Remmert, Theory of Complex Functions (Springer-Verlag, 1991).

  22. J. D. van der Waals, De Continuiteit van den Gas en Vloeistoftoestand, Academic Thesis (Leiden, 1873).

  23. M. Zahradník, An alternate version of PirogovüSinai theory, Commun. Math. Phys. 93:559–581 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedli, S., Pfister, CE. Non-Analyticity and the van der Waals Limit. Journal of Statistical Physics 114, 665–734 (2004). https://doi.org/10.1023/B:JOSS.0000012506.98828.dd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000012506.98828.dd

Navigation