Skip to main content
Log in

Coherent and Dissipative Spin Dynamics in N-Electron Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the ensemble averaged evolution of N-electron systems dynamically coupled to a statistical environment. The electrons are characterized by their spatial and by their spin properties. While the Hilbert space for single electrons is given by the tensor product of the Hilbert spaces associated with both properties, the corresponding Hilbert space for N-electron systems cannot be factorized. Consequently, quantum correlations between spatial and spin properties become extremely important. We assume that the evolution of the spin properties is controlled by spin-orbit interaction and that the spatial properties take the part of a bath held near some equilibrium. This description is appropriate for magnetic systems where the electronic states near the ground state correspond to different spin configurations, whereas electronic states with large excitation energies belong to different spatial-orbital configurations. In order to determine the coarse grained evolution of the spin properties, we have to know the evolution of the N-electron system over time intervals larger than the bath-correlation time. This is obtained from the first- and second-order contributions in the interaction picture. We show that, in spite of the strong quantum correlations between spin properties and spatial properties, the coarse grained statistical evolution of the electronic spin properties may be described by a set of coupled master equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Fick and G. Sauermann, The Quantum Statistics of Dynamic Processes, Springer Series in Solid State Sciences, Vol. 86, P. Fulde, ed. (Springer-Verlag, Heidelberg, 1990), p. 266.

    Google Scholar 

  2. J. von Neumann, Die mathematischen Grundlagen der Quantenmechanik (Springer, Berlin, 1932); Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

  3. P. A. M. Dirac, Proc. Camb. Phil. Soc. 25:62 (1929); ibid. 26:376 (1930); ibid. 27:240 (1931).

    Google Scholar 

  4. R. P. Feynman, Rev. Mod. Phys. 20:367 (1948).

    Google Scholar 

  5. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, London, 1955).

    Google Scholar 

  6. R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. (N. Y.) 24:118 (1963).

    Google Scholar 

  7. L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 1981).

  8. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (World Scientific, Singapore, 1995).

    Google Scholar 

  9. F. Bloch, Phys. Rev. 102:104 (1956).

    Google Scholar 

  10. R. K. Wangsness and F. Bloch, Phys. Rev. 89:4 (1953).

    Google Scholar 

  11. A. G. Redfield, Adv. Mag. Res. 1:1 (1965); IBM J. Res. Dev. 1:19 (1957).

    Google Scholar 

  12. W. H. Louisell, Quantum Statistical Properties of Radiation (John Wiley & Sons, New York, 1990).

    Google Scholar 

  13. R. R. Puri, Mathematical Methods of Quantum Optics, Springer Series in Optical Sciences, Vol. 79 (Springer-Verlag, New York, 2001).

    Google Scholar 

  14. F. Haake, Statistical treatment of open systems by generalized master equations, Springer Tracts in Modern Physics 66:98 (1973).

    Google Scholar 

  15. E. B. Davies, Commun. Math. Phys. 39:91 (1974).

    Google Scholar 

  16. G. Lindblad, Commun. Math. Phys. 40:147 (1975); ibid. 48:119 (1976).

    Google Scholar 

  17. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17:821 (1976).

    Google Scholar 

  18. H. Spohn and J. L. Lebowitz, Adv. Chem. Phys. 38 (Wiley, New York, 1978).

    Google Scholar 

  19. R. Dümcke and H. Spohn, Z. Physik B 34:419 (1979).

    Google Scholar 

  20. R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics, Vol. 286 (Springer Verlag, Berlin, 1987).

    Google Scholar 

  21. G. L. Sewell, Quantum Mechanics and Its Emergent Macrophysics (Princeton University Press, Princeton, 2002).

    Google Scholar 

  22. R. Alicki and M. Fannes, Quantum Dynamical Systems (Oxford University Press, Oxford, 2001).

    Google Scholar 

  23. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

    Google Scholar 

  24. A. Vaterlaus, T. Beutler, and F. Meier, Phys. Rev. Lett. 67:3314 (1991).

    Google Scholar 

  25. A. Vaterlaus, T. Beutler, D. Guarisco, M. Lutz, and F. Meier, Phys. Rev. B 46:5280 (1992).

    Google Scholar 

  26. W. Hübner and K. H. Bennemann, Phys. Rev. B 53:3422 (1996).

    Google Scholar 

  27. See, e.g., W. A. de Heer, P. Milani, and A. Châtelain, Phys. Rev. Lett. 65:488 (1990); A. J. Cox, J. G. Louderback, and L. A. Bloomfield, Phys. Rev. Lett. 71:923 (1993).

    Google Scholar 

  28. M. Ledermann, S. Schulz, and M. Ozaki, Phys. Rev. Lett. 73:1986 (1994).

    Google Scholar 

  29. W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Yu. P. Kalmykov, E. C. Kennedy, and W. Wernsdorfer, Phys. Rev. Lett. 80:5655 (1998).

    Google Scholar 

  30. J. S. Lomont, Application of Finite Groups (Academic Press, New York, 1959).

    Google Scholar 

  31. H. Boerner, Representations of Groups (North-Holland Publishing Company, Amsterdam, 1963).

    Google Scholar 

  32. M. Hamermesh, Group Theory and its Application to Physical Problems, 2nd Ed. (Addison-Wesley, Reading, Massachussets, 1964).

    Google Scholar 

  33. D. S. Passman, Permutation Groups (W. A. Benjamin, Inc., Amsterdam, 1968).

    Google Scholar 

  34. C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Interscience, Wiley, New York, 1988).

    Google Scholar 

  35. L. Jansen and M. Boon, Theory of Finite Groups, Applications in Physics (North-Holland Publishing Company, Amsterdam, 1967).

    Google Scholar 

  36. G. James and A. Kerber, The Representation Theory of the Symmetry Group (Addison-Wesley, Reading, Massachussets, 1981).

    Google Scholar 

  37. Miller, Jr., Symmetry Groups and their Applications (Academic Press, New York, 1972).

    Google Scholar 

  38. A. Katak and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, 1995), p. 142.

  39. Ref. 34, p. 190.

  40. Ref. 30, pp. 259–266; ref. 32, pp. 111-113; ref. 37, pp. 92-100.

  41. Ref. 30, pp. 52–61; ref. 32, pp. 101-104.

  42. Ref. 32, Chap. 10.

    Google Scholar 

  43. Ref. 31, p. 112.

  44. Note that the Clebsch-Gordan coefficients C 1α M S M′ S′ are basis dependent. At the present stage, the basis in ℋ A is not yet known, so that the Clebsch-Gordan coefficients cannot be specified. The reader should also be aware of the fact that the Clebsch-Gordan coefficients refer to the cartesian spatial components of the operators Σμ rather than to the usually employed linear combinations.

  45. Ref. 30, pp. 261–265.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuse, F.A., de Coulon, V. & Maschke, K. Coherent and Dissipative Spin Dynamics in N-Electron Systems. Journal of Statistical Physics 114, 361–453 (2004). https://doi.org/10.1023/B:JOSS.0000003115.75917.08

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003115.75917.08

Navigation