Skip to main content
Log in

General H-Theorem for Hard Spheres

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The maximum entropy formalism is used to investigate the growth of entropy (H-theorem) for an isolated system of hard spheres in an external potential under general boundary geometry. Assuming that only correlations of a finite number of particles are controlled and the rest maximizes entropy, we obtain an H-theorem for such a system The limiting cases such as the modified Enskog equation and linear kinetic theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Gibbs, Elementary Principles in Statistical Mechanics (Dover, New York, 1960).

    Google Scholar 

  2. A. I. Khinchin, Mathematical Foundations of Information Theory (Dover, New York, 1957).

    Google Scholar 

  3. J. L. Lebowitz, Boltzmann's entropy and time's arrow, Phys. Today 46:36–38 (1993).

    Google Scholar 

  4. J. L. Lebowitz, Microscopic reversibility and macroscopic behavior: Physical explanations and mathematical derivations, in 25 Years of Non-Equilibrium Statistical Mechanics, Proceedings, Sitges Conference, Barcelona, Spain, 1994, in Lecture Notes in Physics, J. J. Brey, J. Marro, J. M. Rubí, and M. San Miguel, eds. (Springer, 1995).

  5. L. Boltzmann, Lectures on Gas Theory (Dover, New York, 1995).

    Google Scholar 

  6. J. Karkheck and G. Stell, Maximization of entropy, kinetic equations and irreversible thermodynamics, Phys. Rev. A 25:3302–3334 (1982).

    Google Scholar 

  7. J. Karkheck, H. van Beijeren, I. de Schepper, and G. Stell, Kinetic theory and H theorem for a dense square well fluid, Phys. Rev. A 32:2517–2520 (1965).

    Google Scholar 

  8. J. Bławzdziewicz and G. Stell, Local H-theorem for a Kinetic Variational Theory, J. Stat. Phys. 56:821–840 (1989).

    Google Scholar 

  9. L. Romero-Salazar, M. Mayorga, and R. M. Velasco, Maximum entropy formalism for a dense gas, Physica A 237:150–168 (1997).

    Google Scholar 

  10. H. van Beijeren, Kinetic theory of dense gases and liquids, Fundamental Problems in Statistical Mechanics, Vol. VII, H. van Beijeren, ed. (North-Holland, Amsterdam, 1990).

    Google Scholar 

  11. C. Cercignani, V. I. Gerasimenko, and D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations (Kluwer, Dordrecht, 1997).

    Google Scholar 

  12. P. Resibois, H-theorem for the (modified) Enskog equation, J. Stat. Phys. 19:593–609 (1978).

    Google Scholar 

  13. J. Bławzdziewicz, B. Cichocki, and H. van Beijeren, H-theorem for a linear kinetic theory, J. Stat. Phys. 66:607–633 (1992).

    Google Scholar 

  14. R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of nonuniform classical fluids, Adv. Phys. 28:143–200 (1979).

    Google Scholar 

  15. A. Planes and E. Vives, Entropic formulation of statistical mechanics, J. Stat. Phys. 106:827–850 (2002).

    Google Scholar 

  16. D. Ruelle, Statistical Physics. Rigorous Results (Benjamin, New York Amsterdam, 1969).

    Google Scholar 

  17. J. Bławzdziewicz and B. Cichocki, Linear kinetic theory of hard sphere fluid, Physica A 127:38–71 (1984).

    Google Scholar 

  18. B. Cichocki, Enskog renormalization in linear kinetic theory, Physica A 142:245–272 (1987).

    Google Scholar 

  19. T. Morita and K. Hiroike, A new approach to the theory of classical fluids, Prog. Theor. Phys. 25:537–578 (1961).

    Google Scholar 

  20. R. J. Baxter, Three-particle hyper-netted chain approximation, Ann. Phys. (N.Y.) 46:509–545 (1968).

    Google Scholar 

  21. A. Bednorz, Graphical representation of the excess entropy, Physica A 298:400–418 (2001).

    Google Scholar 

  22. M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen, Physica 45:127 (1969).

    Google Scholar 

  23. H. van Beijeren, Ph.D. thesis, University Nijmegen (1974).

  24. H. van Beijeren and M. H. Enrst, J. Stat. Phys. 12:125 (1979).

    Google Scholar 

  25. J. Piasecki, Kinetic theory of dense gases, Fundamental Problems in Statistical Mechanics, Vol. IV, E. G. D. Cohen and W. Fiszdon, eds. (Ossolineum, Wrocław, 1978).

    Google Scholar 

  26. H. van Beijeren, Equilibrium distribution of hard-sphere systems and revised Enskog theory, Phys. Rev. Lett. 51:1503–5 (1983).

    Google Scholar 

  27. M. Mareschal, J. Bławzdziewicz, and J. Piasecki, Local entropy production from the revised Enskog equation, Phys. Rev. Lett. 52:1169–1172 (1984).

    Google Scholar 

  28. J. Piasecki, Local H-theorem for the revised Enskog equation, J. Stat. Phys. 48:1203–1211 (1987).

    Google Scholar 

  29. G. E. Uhlenbeck and G. W. Ford, in Studies in Statistical Mechanics I, G. E. Uhlenbeck and J. de Boer, eds. (North-Holland, Amsterdam, 1962).

    Google Scholar 

  30. G. Stell, Cluster expansions for classical systems in equilibrium, in The Equilibrium Theory of Classical Fluids, H. Frish and J. Lebowitz, eds. (Benjamin, New York, 1964).

    Google Scholar 

  31. J. Percus, Theory of fluids, in The Equilibrium Theory of Classical Fluids, H. Frish and J. Lebowitz, eds. (Benjamin, New York, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bednorz, A., Cichocki, B. General H-Theorem for Hard Spheres. Journal of Statistical Physics 114, 327–360 (2004). https://doi.org/10.1023/B:JOSS.0000003114.38280.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003114.38280.e4

Navigation