Skip to main content
Log in

Fractional Kinetics in Kac–Zwanzig Heat Bath Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a variant of the Kac–Zwanzig model of a particle in a heat bath. The heat bath consists of n particles which interact with a distinguished particle via springs and have random initial data. As n → ∞ the trajectories of the distinguished particle weakly converge to the solution of a stochastic integro-differential equation—a generalized Langevin equation (GLE) with power-law memory kernel and driven by 1/f α-noise. The limiting process exhibits fractional sub-diffusive behaviour. We further consider the approximation of non-Markovian processes by higher-dimensional Markovian processes via the introduction of auxiliary variables and use this method to approximate the limiting GLE. In contrast, we show the inadequacy of a so-called fractional Fokker–Planck equation in the present context. All results are supported by direct numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1971).

    Google Scholar 

  2. S. Adelman and J. Doll, Generalized Langevin equation approach for atom/solid-surface scattering: Collinear atom/harmonic chain model, J. Chem. Phys. 61:4242–4245 (1974).

    Google Scholar 

  3. F. Amblard, A. Maggs, B. Yurke, A. Pargellis, and S. Leibler, Subdiffusion and anomalous local viscoelasticity in actin networks, Phys. Rev. Lett. 77:4470–4473 (1996).

    Google Scholar 

  4. E. Barkai, Fractional Fokker-Planck equation, solution and application, Phys. Rev. E 63:046118 (2001).

    Google Scholar 

  5. E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E 61:132–138 (2000).

    Google Scholar 

  6. E. Barkai and R. Silbey, Fractional Kramers equation, J. Phys. Chem. B 104:3866–3874 (2000).

    Google Scholar 

  7. P. Billingsley, Probability and Measure, 3rd ed. (Wiley, New York, 1995).

    Google Scholar 

  8. P. Billingsley, Convergence of Probability Measures, 2nd ed. (Wiley, New York, 1999).

    Google Scholar 

  9. B. Carmeli and A. Nitzan, Non-Markovian theory of activated rate processes. III. Bridging between the Kramers limits, Phys. Rev. A 29:1481–1495 (1984).

    Google Scholar 

  10. F. de Hoog, J. Knight, and A. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comp. 3:357–366 (1982).

    Google Scholar 

  11. M. Dygas, B. Matkowsky, and Z. Schuss, A singular perturbation approach to non-Markovian escape rate problems, SIAM J. Appl. Aath. 46:265–298 (1986a).

    Google Scholar 

  12. M. Dygas, B. Matkowsky, and Z. Schuss, A singular perturbation approach to non-Markovian escape rate problems with state dependent friction, J. Chem. Phys. 84:3731–3738 (1986b).

    Google Scholar 

  13. A. Erdélyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954).

    Google Scholar 

  14. G. Ford and M. Kac, On the quantum Langevin equation, J. Stat. Phys. 46:803–810 (1987).

    Google Scholar 

  15. G. Ford, M. Kac, and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J. Math. Phys. 6:504–515 (1965).

    Google Scholar 

  16. C. Fox, The G and H-functions as symmetrical Fourier fernels, Trans. Amer. Math. Soc. 98:395–429 (1961).

    Google Scholar 

  17. I. Gikhman and A. Skorokhod, Stochastic Differential Equations (Springer-Verlag, Berlin, 1972).

    Google Scholar 

  18. I. Gikhman and A. Skorokhod, Introduction to the Theory of Random Processes (Dover, Mineola, NY, 1996).

    Google Scholar 

  19. H. Grabert, P. Hänggi, and P. Talkner, Microdynamics and nonlinear stochastic processes of gross variables, J. Stat. Phys. 22:537–552 (1980).

    Google Scholar 

  20. P. Grigolini, A generalized Langevin equation for dealing with nonadditive fluctuations, J. Stat. Phys. 27:283–316 (1982).

    Google Scholar 

  21. G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra Integral and Functional Equations (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  22. R. Grote and J. Hynes, The stable states picture of chemical reactions: II. Rate constants for condensed and gas phase reaction models, J. Chem. Phys. 73:2715–2732 (1980).

    Google Scholar 

  23. P. Guest, Laplace Transform and an Introduction to Distributions (Ellis Horwood Ltd, Chichester, England, 1991).

    Google Scholar 

  24. E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations: Nonstiff Problems (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  25. O. Hald and R. Kupferman, Asymptotic and numerical analyses for mechanical models of heat baths, J. Stat. Phys. 106:1121–1184 (2002).

    Google Scholar 

  26. P. Hanggi, The functional derivative and its use in the description of noisy dynamical systems, in Stochastic Processes Applied to Physics, L. Pesquera and M. Rodriguez, eds. (Santander, Spain, 1985), pp. 69–95.

    Google Scholar 

  27. P. Hänggi and F. Mojtabai, Thermally activated escape rate in presence of long-time memory, Phys. Rev. A 26:1168–1170 (1982).

    Google Scholar 

  28. P. Hänggi, P. Talkner, and M. Bokovec, Reaction rate theory: Fifty years after Kramers, Rev. Mod. Phys. 62:251–341 (1990).

    Google Scholar 

  29. W. Huisinga, C. Schütte, and A. Stuart, Extracting macroscopic stochastic dynamics: Model problems, Comm. Pure Appl. Math. 56:234–269 (2003).

    Google Scholar 

  30. V. Jakšić and C.-A. Pillet, Ergodic properties of the non-Markovian Langevin equation, Lett. Math. Phys. 41:49–57 (1997).

    Google Scholar 

  31. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus (Springer, New York, 1991).

    Google Scholar 

  32. R. Kupferman and A. Stuart, Fitting SDE models to nonlinear Kac-Zwanzig heat bath models, submitted to Physica D (2003).

  33. R. Kupferman, A. Stuart, J. Terry, and P. Tupper, Long term behaviour of large mechanical systems with random initial data, Stoch. Dyn. 2:533–562 (2002).

    Google Scholar 

  34. S. Landis, B.-Z. Borovsky, and Z. Schuss, The influence of 1 / f α phase noise on a second-order delay lock loop: Model construction and analysis, preprint, (2003).

  35. B. Mandelbrot and J. van Ness, Fractional Brownian motion, fractional Gaussian noise and applications, SIAM Rev. 10:422 (1968).

    Google Scholar 

  36. J. Masoliver and K. Wang, Free inertial processes driven by Gaussian noise: Probability distributions, anomalous diffusion, and fractal behavior, Phys. Rev. E 51:2987–2995 (1995).

    Google Scholar 

  37. R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett. 82:3563–3567 (1999).

    Google Scholar 

  38. R. Miller, Nonlinear Volterra Integral Equations (W. A. Benjamin, Philippines, 1971).

    Google Scholar 

  39. E. Montroll and G. Weiss, Random walks on lattices. II, J. Math. Phys. 6:167–181 (1965).

    Google Scholar 

  40. H. Mori, A continued-fraction representation of the time-correlation function, Prog. Theor. Phys. 34:399–416 (1965a).

    Google Scholar 

  41. H. Mori, Transport, collective motion, and Brownian motion, Prog. Theor. Phys. 33:423–450 (1965b).

    Google Scholar 

  42. H. Mori, H. Fujisaka, and H. Shigematsu, A new expansion of the master equation, Prog. Theor. Phys. 51:109–122 (1974).

    Google Scholar 

  43. K. Oldham and J. Spanier, The Fractional Calculus (Academic Press, New York, 1974).

    Google Scholar 

  44. J. Porrà, K.-G. Wang, and J. Masoliver, Generalized Langevin equation: Anomalous diffusion and probability distributions, Phys. Rev. E 53:5872–5881 (1996).

    Google Scholar 

  45. W. Schneider and W. Wyss, Fractional diffusion and wave equation, J. Math. Phys. 30:134–144 (1989).

    Google Scholar 

  46. J. Straub, M. Borkovec, and B. Berne, Shortcomings of current theories of non-Markovian activated rate processes, J. Chem. Phys. 83:3172–3174 (1985).

    Google Scholar 

  47. J. Straub, M. Borkovec, and B. Berne, Non-Markovian activated rate processes: Comparison of current theories with numerical simulation data, J. Chem. Phys. 84:1788–1794 (1986).

    Google Scholar 

  48. A. Stuart and J. Warren, Analysis and experiments for a computational model of a heat bath, J. Stat. Phys. 97:687–723 (1999).

    Google Scholar 

  49. H. Wall, Analytic Theory of Continued Fractions (D. Van Nostrand, New York, 1948).

    Google Scholar 

  50. K. Wang, Long-time-correlation effects and biased anomalous diffusion, Phys. Rev. A 45:833–837 (1992).

    Google Scholar 

  51. L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach (McGraw-Hill, New York, 1963).

    Google Scholar 

  52. G. Zaslavsky, Chaos, fractional kinetics and anomalous transport, Physics Reports 371:461–580 (2002).

    Google Scholar 

  53. R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys. 9:215–220 (1973).

    Google Scholar 

  54. R. Zwanzig, Problems in nonlinear transport theory, in Systems far from Equilibrium, L. Garrido, ed. (Springer, New York, 1980), pp. 198–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupferman, R. Fractional Kinetics in Kac–Zwanzig Heat Bath Models. Journal of Statistical Physics 114, 291–326 (2004). https://doi.org/10.1023/B:JOSS.0000003113.22621.f0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003113.22621.f0

Navigation