Skip to main content
Log in

The Raise and Peel Model of a Fluctuating Interface

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a one-dimensional nonlocal stochastic model of adsorption and desorption depending on one parameter, the adsorption rate. At a special value of this parameter, the model has some interesting features. For example, the spectrum is given by conformal field theory, and the stationary non-equilibrium probability distribution is given by the two-dimensional equilibrium distribution of the ice model with domain wall type boundary conditions. This connection is used to find exact analytic expressions for several quantities of the stochastic model. Vice versa, some understanding of the ice model with domain wall type boundary conditions can be obtained by the study of the stochastic model. At the special point we study several properties of the model, such as the height fluctuations as well as cluster and avalanche distributions. The latter has a long tail which shows that the model exhibits self organized criticality. We also find in the stationary state a special surface phase transition without enhancement and with a crossover exponent φ=2/3. Furthermore, we study the phase diagram of the model as a function of the adsorption rate and find two massive phases and a scale invariant phase where conformal invariance is broken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Some recent reviews are A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 1995); E. H. Hinrichsen, Adv. Phys. 49:815 (2000).

  2. J. de Gier, B. Nienhuis, P. A. Pearce, and V. Rittenberg, Phys. Rev. E 67:016101 (2002).

    Google Scholar 

  3. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59:381 (1987); J. Phys. A 38:364 (1988).

    Google Scholar 

  4. Some recent reviews are H. J. Jensen, Self Organised Criticality (Cambridge University Press, 1998); D. Dhar, Physica A 264:1 (1999).

  5. A. Ben-Hur and O. Biham, Phys. Rev. E 53:R1317 (1996); A. Vespignani and S. Zapperi, Phys. Rev. E 57:6345 (1998).

    Google Scholar 

  6. M. T. Batchelor, J. de Gier, and B. Nienhuis, J. Phys. A 34:L265 (2001).

    Google Scholar 

  7. P. A. Pearce, V. Rittenberg, J. de Gier, and B. Nienhuis, J. Phys. A 35:L661 (2002).

    Google Scholar 

  8. F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, and G. R. W. Quispel, J. Phys. A 20:6397 (1987).

    Google Scholar 

  9. I. I. Kogan and A. Nichols, hep-th/0203207 (2002) and references therein; M. Flohr, hep-th/0111228 (2001); M. R. Gaberdiel, hep-th/0111260 (2001); S. Kawai, hep-th/0204169 (2002).

  10. V. Gurarie and A. W. W. Ludwig, J. Phys. A 35:L3771 (1999); I. I. Kogan and A. M. Tsvelik, Mod. Phys. Lett. A 15:931 (2000).

    Google Scholar 

  11. K. Schoutens, P. Fendley, and J. de Boer, Phys. Rev. Lett. 90:120402 (2003).

    Google Scholar 

  12. I. I. Kogan and D. Polyakov, Int. J. Mod. Phys. A 16:2559 (2001).

    Google Scholar 

  13. D. P. Robbins, math.CO/0008045 (2000).

  14. G. Kuperberg, Ann. Math. 156:835 (2002).

    Google Scholar 

  15. D. M. Bressoud, Proofs and Confirmations: The story of the Alternating Sign Matrix Conjecture (Cambridge, Cambrige University Press, 1999)

    Google Scholar 

  16. E. Lieb, Phys. Rev. Lett. 18:692 (1967).

    Google Scholar 

  17. N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, J. Algebraic Combin. 1:111–132/219–234 (1992).

    Google Scholar 

  18. M. T. Batchelor, H. W. J. Blöte, B. Nienhuis, and C. M. Yung, J. Phys. A 29:L399 (1996).

    Google Scholar 

  19. B. Wieland, Electron. J. Combin. 7, research paper 37 (2000).

  20. A. V. Razumov and Yu. G. Stroganov, math.CO/0104216 (2001), cond-mat/0108103 (2001).

  21. P. Zinn-Justin, Phys. Rev. E 62 (2000), 341; V. Korepin and P. Zinn-Justin, J. Phys. A 33 (2000), 7053; P. Zinn-Justin, cond-mat/0205192 (2002).

    Google Scholar 

  22. J. Propp, Discr. Math. and Theor. Comp. Sci. Proc. AA 43 (2001).

  23. N. M. Bogoliubov, A. G. Pronko, and M. B. Zvonarev, J. Phys. A 35:5525 (2002).

    Google Scholar 

  24. Yu. G. Stroganov, math-ph/0204042 (2002).

  25. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983), p. 2.

    Google Scholar 

  26. R. Balian and G. Toulouse, Ann. Phys. 83:28 (1973).

    Google Scholar 

  27. T. W. Burkhardt, E. Eisenriegler, and I. Guim, Nucl. Phys. B 316:559 (1989).

    Google Scholar 

  28. S. L. A. Queiroz, J. Phys. A 27:L363 (1995).

    Google Scholar 

  29. P. Ruelle, private communication.

  30. S. Mathieu and P. Ruelle, Phys. Rev. E 64:066130 (2001); P. Ruelle, Phys. Lett. B 539:172 (2002) and references therein.

    Google Scholar 

  31. E. V. Ivashkevich and V. B. Priezzhev, Physica A 254:97 (1998).

    Google Scholar 

  32. D. Dhar, Physica A 263:4 (1999).

    Google Scholar 

  33. P. E. Rouse, J. Chem. Phys. 21:1272 (1953).

    Google Scholar 

  34. V. Privman and N. M. Svrakic, Directed Models of Polymers, Interfaces, and Clusters: Scaling and Finite Size Properties, Lecture Notes in Physics, Vol. 38 (Springer Verlag, Berlin Heidelberg, 1989).

    Google Scholar 

  35. H. N. Koduvely and D. Dhar, J. Stat. Phys. 90:57 (1998).

    Google Scholar 

  36. V. Pasquier, Nucl. Phys. B 285, 162 (1987); J. Phys. A 20, L1229 (1987); J. Phys. A 20, 5707 (1987).

    Google Scholar 

  37. A. Owczarek and R. J. Baxter, J. Stat. Phys. 49:1093 (1987).

    Google Scholar 

  38. P. P. Martin, Potts Models and Related Problems in Statistical Mechanics (World Scientific Singapore, 1991).

  39. V. Pasquier and H. Saleur, Nucl. Phys. B 330:523 (1990).

    Google Scholar 

  40. V. E. Korepin, Comm. Math. Phys. 86:391 (1982).

    Google Scholar 

  41. W. H. Mills, D. P. Robbins, and H. Rumsey, Invent. Math. 66:73 (1982); W. H. Mills, D. P. Robbins, and H. Rumsey, J. Combin. Theory Ser. A 34:340 (1983).

    Google Scholar 

  42. D. Zeilberger, New York J. Math. 2:59 (1996).

    Google Scholar 

  43. We thank Yu. G. Stroganov for this conjecture.

  44. H. Hinrichsen and L. Sittler, private communication.

  45. F. Family and E. Vicsek, J. Phys. A 18:L75 (1985); Dynamics of Fractal Surfaces (World Scientific Singapore, 1991).

    Google Scholar 

  46. U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel, Phys. Rev. E 57:4997 (1998).

    Google Scholar 

  47. H. Hinrichsen, private communication.

  48. R. Brak, J. W. Essam, and A. L. Owczarek, J. Stat. Phys. 93:155 (1998); J. Stat. Phys. 102:997 (2001), and references therein.

    Google Scholar 

  49. J. de Gier, math.CO/0211285 (2002).

  50. A. Erdélyi, Higher Transcendental Functions, Vol. 1, (McGraw-Hill, New York, 1953).

    Google Scholar 

  51. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).

    Google Scholar 

  52. T. Prellberg and A. L. Owczarek, J. Phys. A 27:1811 (1994).

    Google Scholar 

  53. C. Vanderzande, Lattice Models of Polymers (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  54. V. Polyakov, Zh. Eksp. Theor. Fiz. 59:542 (1970).

    Google Scholar 

  55. J. des Cloizeaux and Gerard Jannink, Polymers in Solution (Clarendon Press Oxford, 1990).

    Google Scholar 

  56. A. L. Owczarek (private communication).

  57. P. Paule and M. Schorn, J. Symb. Comp. 20:673 (1995).

    Google Scholar 

  58. M. T. Batchelor, J. Phys. A 26:3733 (1993).

    Google Scholar 

  59. B. Duplantier and H. Saleur, Phys. Rev. Lett. 59:539 (1987).

    Google Scholar 

  60. N. Read and H. Saleur, Nucl. Phys. B 613:409 (2001), and references therein.

    Google Scholar 

  61. C. Tebaldi, M. De Menech, and A. L. Stella, Phys. Rev. Lett. 83, 3952 (1999).

    Google Scholar 

  62. J. M. van den Broeck and L. W. Schwartz, Siam J. Math. Anal. 10:639 (1979).

    Google Scholar 

  63. M. T. Batchelor, J. de Gier, and B. Nienhuis, Int. J. Mod. Phys. B 16:1883 (2002).

    Google Scholar 

  64. N. M. Bogoliubov, A. V. Kitaev, and M. B. Zvonarev, Phys. Rev. E 65:026126 (2002).

    Google Scholar 

  65. D. Zeilberger, Electr. J. Combin. 3:R13 (1996).

    Google Scholar 

  66. G. Kuperberg, Invent. Math. Res. Notes 1996:139 (1996).

    Google Scholar 

  67. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Gier, J., Nienhuis, B., Pearce, P.A. et al. The Raise and Peel Model of a Fluctuating Interface. Journal of Statistical Physics 114, 1–35 (2004). https://doi.org/10.1023/B:JOSS.0000003102.81727.fd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003102.81727.fd

Navigation