Skip to main content
Log in

Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dense, near net-shaped ZrC/W-based composites have been fabricated at modest temperatures and at ambient pressure by a reactive infiltration process known as the Displacive Compensation of Porosity (DCP) method. Porous WC preforms with hourglass shapes (for rocket nozzle liners) were produced by gel casting, whereas simple bar-shaped preforms were produced by uniaxial pressing. The porous preforms were exposed to molten Zr2Cu at 1200–1300°C and ambient pressure. The Zr2Cu liquid rapidly infiltrated into the preforms and underwent a displacement reaction with the WC to yield a more voluminous mixture of solid products, ZrC and W. This displacement reaction-induced increase in internal solid volume filled the prior pore spaces of the preforms (“displacive compensation of porosity”) to yield dense, ZrC/W-based composites. Because the preforms remained rigid during reactive infiltration, the final composites retained the external shapes and dimensions of the starting preforms. A DCP-derived, ZrC/W-based nozzle insert was found to be resistant to the severe thermal shock and erosive conditions of a Pi-K rocket motor test. The DCP process enables dense, ceramic/refractory metal composites to be fabricated in complex and near net shapes without the need for high-temperature or high-pressure densification or for extensive machining (i.e., relatively expensive processing steps are avoided).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. UPADHYA, in “High Performance High Temperature Materials for Rocket Engines and Space Environment,” edited by K. Upadhya (ASM, Materials Park, OH, 1993) p. 1.

    Google Scholar 

  2. K. UPADHYA, J. M. YANG and W. P. HOFFMAN, Amer. Ceram. Soc. Bull. 76(12) (1997) 51.

    Google Scholar 

  3. G. P. SUTTON, “Rocket Propulsion Elements” (John Wiley and Sons, Inc., New York, NY, 1992) p. 483.

    Google Scholar 

  4. E. G. KENDALL and J. D. MCCLELLAND, Amer. Soc. Testing Mater. Spec. Tech. Publ. (379) (1964) 71.

  5. J. D. WALTON, JR. and C. R. MASSON, JR., Corrosion 16 (1960) 371.

    Google Scholar 

  6. M. E. DE MORTON, Wear 41 (1977) 223.

    Google Scholar 

  7. A. A. VICARIO, JR., W. T. FREEMAN, JR. and E. D. CASSEDAY, J. Spacecraft 11(9) (1974) 631.

    Google Scholar 

  8. R. C. ROSSI, Mater. Sci. Res. 5 (1971) 123.

    Google Scholar 

  9. P. R. SUBRAMANIAN and D. E. LAUGHLIN, in“Phase Diagrams of Binary Tungsten Alloys,” edited by S. V. Nagender Naidu and P. Rama Rao (Indian Institute of Metals, Calcutta, 1991) p. 76.

    Google Scholar 

  10. E. LASSNER and W. D. SCHUBERT, “Tungsten: Properties, Chemistry, and Technology of the Element, Alloys, and Chemical Compounds” (Plenum Publishers, New York, NY, 1999) p. 13, 16, 302.

    Google Scholar 

  11. S. W. YIH and C. T. WANG, “Tungsten: Sources, Metallurgy, Properties, and Applications” (Plenum Press, New York, NY, 1979) p. 249, 358, 405.

    Google Scholar 

  12. S. HSU, C. CHEN, L. SHEN and K. W. FRANZ, J. Spacecraft 14(4) (1977) 207.

    Google Scholar 

  13. “JCPDS X-ray Diffraction Card File” (International Centre for Diffraction Data, ICDD, Newton Square, PA, 1981) Cards No. 4-806 (W), 25-1047 (WC), 35-784 (ZrC), 4-836 (Cu), 18-466 (Zr2Cu).

  14. Metals Handbook, 9th ed., “Properties and Selection: Stainless Steels, Tool Materials and Special-Purpose Metals” (American Society for Metals, Metals Park, OH, 1980) Vol. 3, p. 328.

  15. W. D. KLOPP and W. R. WITZKE, J. Less-Comm. Met. 24 (1971) 427.

    Google Scholar 

  16. K. S. SHIN, A. LUO, B.-L. CHEN and D. L. JACOBSON, J. Metals 42(8) (1998) 12.

    Google Scholar 

  17. E. K. STORMS, “The Refractory Carbides” (Academic Press, New York, NY, 1967) p. 18.

    Google Scholar 

  18. W. S. WILLIAMS, in “Progress in Solid State Chemistry,” edited by H. Reiss and J. O. McCaldin (Pergamin Press, New York, NY, 1971) p. 57.

    Google Scholar 

  19. Phase Equilibria Diagrams, “Borides, Carbides, and Nitrides”, edited by A. E. McHale (The American Ceramic Society, Westerville, OH, 1994) Vol. X, p. 371.

    Google Scholar 

  20. Y. S. TOULOUKIAN, R. K. KIRBY, R. E. TAYLOR and P. D. DESAI, “Thermophysical Properties of Matter, Vol. 12: Thermal Expansion of Metallic Elements and Alloys” (Plenum Press, New York, NY, 1975) p. 354.

    Google Scholar 

  21. Y. S. TOULOUKIAN, R. K. KIRBY, R. E. TAYLOR and T. Y. R. LEE, “Thermophysical Properties of Matter, Vol. 13: Thermal Expansion of Nonmetallic Solids” (Plenum Press, New York, NY, 1977) p. 926.

    Google Scholar 

  22. Y. S. TOULOUKIAN, R. W. POWELL, C. Y. HO and P. G. KLEMENS, “Thermophysical Properties of Matter, Vol. 1: Thermal Conductivity of Metallic Elements and Alloys” (Plenum Press, New York, NY, 1970) p. 428.

    Google Scholar 

  23. Idem., “Thermophysical Properties of Matter, Vol. 2: Thermal Conductivity of Nonmetallic Solids” (Plenum Press, New York, NY, 1970) p. 611.

  24. G. M. SONG, Y. J. WANG and Y. ZHOU, J. Mater. Sci. 36 (2001) 4625.

    Google Scholar 

  25. Y. J. WANG and Y. ZHOU Idem., Mater. Sci. Eng. AA334 (2002) 223.

    Google Scholar 

  26. G. M. SONG, Y. ZHOU, Y. J. WANG and T. C. LEI, J. Mater. Sci. Lett. 17 (1998) 1739.

    Google Scholar 

  27. K. H. SANDHAGE, R. R. UNOCIC, M. B. DICKERSON, M. TIMBERLAKE and K. GUERRA, “Method for Fabricating High-Melting, Wear-Resistant Ceramics and Ceramic Composites at Low Temperatures,” U.S. Patent No. 6,598,656, July 29, 2003.

  28. K. H. SANDHAGE and P. KUMAR, “Method for Fabricating Shaped Monolithic Ceramics and Ceramic Composites Through Displacive Compensation of Porosity, and Ceramics and Composites made Thereby,” U.S. Patent No. 6,407,022, June 18, 2002.

  29. P. J. WURM, P. KUMAR, K. D. RALSTON, M. J. MILLS and K. H. SANDHAGE, in “Innovative Processing and Synthesis of Ceramics, Glasses, and Composites V. Ceram. Trans.,” edited by J. P. Singh, N. P. Bansal, A. Bandyopadhyay, and L. Klein (The American Ceramic Society, Westerville, OH, 2002) Vol. 129, p. 93.

    Google Scholar 

  30. P. KUMAR, N. A. TRAVITSKY, P. BEYER, K. H. SANDHAGE, R. JANSSEN and N. CLAUSSEN, Scripta Mater. 44(5) (2001) 751.

    Google Scholar 

  31. P. KUMAR and K. H. SANDHAGE, J. Mater. Sci. 34(23) (1999) 5757.

    Google Scholar 

  32. P. KUMAR, S. A. DREGIA and K. H. SANDHAGE, J. Mater. Res. 14(8) (1999) 3312.

    Google Scholar 

  33. K. A. ROGERS, P. KUMAR, R. CITAK and K. H. SANDHAGE, J. Amer. Ceram. Soc. 82(3) (1999) 757.

    Google Scholar 

  34. M. B. DICKERSON, R. L. SNYDER and K. H. SANDHAGE, ibid. 85(3) (2002) 730.

    Google Scholar 

  35. Z. GRZESIK, M. B. DICKERSON and K. H. SANDHAGE, J. Mater. Res. 18(9) (2003) 2135.

    Google Scholar 

  36. I. BARIN, “Thermochemical Data of Pure Substances” (VCH Verlagsgesellschaft, Weinheim, Germany, 1995) p. 1788, 1860.

    Google Scholar 

  37. O. J. KLEPPA and S. WATANABE, Metall. Trans. B 13B (1982) 391.

    Google Scholar 

  38. N. SAUNDERS, CALPHAD: Comput. Coupling Phase Diagr. Thermochem. 9 (1985) 297.

    Google Scholar 

  39. E. KNELLER, Y. KHAN and U. GORRES, Z. Metallkunde 77(1) (1986) 43.

    Google Scholar 

  40. P. R. SUBRAMANIAN and D. E. LAUGHLIN, in “Phase Diagrams of Binary Copper Alloys,” edited by P. R. Subramanian and D. E. Laughlin (ASM International, Materials Park, OH, 1994) p. 109.

    Google Scholar 

  41. R. RESNICK, C. WURMS, R. STEINITZ and E. MAZZA, Metals Eng. Quart. 3(2) (1963) 51.

    Google Scholar 

  42. P. G. WAPNER, W. P. HOFFMAN and J. P. JONES, U.S. Patent No. 6,309,703, Oct. 30, 2001. 43.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickerson, M.B., Wurm, P.J., Schorr, J.R. et al. Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method. Journal of Materials Science 39, 6005–6015 (2004). https://doi.org/10.1023/B:JMSC.0000041697.67626.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000041697.67626.46

Keywords

Navigation