Skip to main content
Log in

Reflections on Parity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The selective synthesis and manipulation of chiral molecules is a major part of stereochemistry. Interactions involving components with “handedness” also occur in nuclear and particle physics. Both fields employ phenomenologies based on group theoretical classifications and symmetry constraints such as the conservation or violation of parity. Smale's discovery of a sphere eversion—homotopic to a central inversion—evades the parity dichotomy by allowing states of opposite chirality to be connected by smooth maps. This transformation demonstrates that parity changes can, in principle, result from the action of sufficiently complex processes, and do not necessarily have to be interpreted as violations of a symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Weyl, Symmetry (Princeton University Press, Princeton, NJ, 1952).

    Google Scholar 

  2. H. Weyl, Raum, Zeit, Materie (Springer, Berlin, 1919).

    Google Scholar 

  3. L. E. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Englewood, NJ, 1969).

    Google Scholar 

  4. H. Poincar´e, La Science et l 'Hypoth`ese (Biblioth`eque de Philosophie Scientifique, Paris, 1902).

    Google Scholar 

  5. H. Poincar´e, The Foundations of Science (Science, New York, 1929).

    Google Scholar 

  6. M. Hamermesh, Group Theory and its Application to Physical Problems (Addison-Wesley, Reading, MA, 1962).

    Google Scholar 

  7. Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds and Physics (North-Holland, Amsterdam, 1982).

  8. E. Kretschmann," ¨uber den physikalischen Sinn der Relativit¨atspostulate," Ann. Phys. 53 (16), 575-614 (1917).

    Google Scholar 

  9. A. Einstein, "Prinzipielles zur allgemeinen Relativit¨atstheorie," Ann. Phys. 55, 241-244 (1918).

    Google Scholar 

  10. E. Wigner, "Einige Folgerungen aus der Schr¨odingerschen Theorie der Termstrukturen," Z. Phys. 43, 624-652 (1927).

    Google Scholar 

  11. H. Lebesgue, "R´emarques," Bull. Soc. Math. Compt. Rend. des S´eances 41 (17), 48-50 (1913).

    Google Scholar 

  12. P. Urysohn "Zur Ersten Randwertaufgabe der Potentialtheorie. Ein Fall der Unl¨osbarkeit," Math. Z. 23, 155-158 (1924).

    Google Scholar 

  13. H. S. M. Coxeter, Introduction to Geometry (Wiley, New York, 1961).

    Google Scholar 

  14. C. Truesdell, "The physical components of vectors and tensors," Z. Angew. Math. Mech. 33 (10/11), 345-356 (1953).

    Google Scholar 

  15. C. Truesdell and R. Toupin, "The classical eld theories," Encyclopedia Phys., Vol. III, Part 1, S. Fl¨ugge, ed. (Springer, Berlin, 1960), pp. 226-858.

    Google Scholar 

  16. H. F. Davis, Introduction to Vector Analysis (Allyn & Bacon, Boston, 1967).

    Google Scholar 

  17. G. Birkhoff and S. MacLane, A Survey of Modern Algebra (Macmillan, New York, 1965).

    Google Scholar 

  18. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (University Press, Cambridge, 1953).

    Google Scholar 

  19. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Springer, Berlin, 1957).

    Google Scholar 

  20. G. Breit, "The effect of retardation on the interaction of two electrons," Phys. Rev. 34, 553-573 (1929).

    Google Scholar 

  21. G. Breit, "The ne structure of He as a test of the spin interactions of two electrons," Phys. Rev. 36, 383-397 (1930).

    Google Scholar 

  22. G. Breit, "Dirac's equation and the spin-spin interactions of two electrons," Phys. Rev. 39, 616-624 (1932).

    Google Scholar 

  23. L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1949).

    Google Scholar 

  24. S. Fl¨ugge and H. Marschall, Rechenmethoden der Quantentheorie (Springer, Berlin, 1947).

    Google Scholar 

  25. J. Roche, "Axial vectors, skew-symmetric tensors and the nature of the magnetic field," Eur. J. Phys. 22 (3), 193-203 (2001).

    Google Scholar 

  26. S. L. Altmann, Rotations, Quaternions, and Double Groups (Clarendon, Oxford, 1986).

    Google Scholar 

  27. M. V. Romalis, W. C. Griffith, J. P. Jacobs, and E. N. Fortson, "New limit on the permanent electric dipole moment of 199 Hg", Phys. Rev. Lett. 86 (12), 2505-2508 (2001).

    Google Scholar 

  28. W. C. Griffith, M. D. Swallows, L. K. Kogler, E. N. Fortson, and M. V. Romalis, "Progress toward an improved limit on the permanent electric dipole moment of 199 Hg," Bull. Am. Phys. Soc. 48 (3), 59 (2003).

    Google Scholar 

  29. L. I. Schiff, "Measurability of nuclear electric dipole moments," Phys. Rev. 132, 2194-2200 (1963).

    Google Scholar 

  30. I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena (Gordon & Breach, Philadelphia, 1991).

    Google Scholar 

  31. F. London, "Zur Theorie und Systematik der Molekularkr¨afte," Z. Phys. 63, 245-279 (1930).

    Google Scholar 

  32. C. R. Gould and E. D. Davis, "Time reversal invariance in nuclear physics:From neutrons to stochastic systems, "in C P Violation in Particle, Nuclear and Astrophysics, M. Beyer, ed. (Springer, Berlin, 2003), pp. 206-236.

    Google Scholar 

  33. H. Hellman, Einf¨uhrung in die Quantenchemie (Franz Deuticke, Leipzig, 1937).

    Google Scholar 

  34. R. P. Feynman, "Forces in molecules," Phys. Rev. 56, 340-343 (1939).

    Google Scholar 

  35. L. Pauling, The Nature of the Chemical Bond, 3rd edn. (University Press, Ithaca, 1960).

    Google Scholar 

  36. J. S. Griffith, The Irreducible Tensor Method for Molecular Symmetry Groups (Prentice-Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

  37. J. W. Smith, Electric Dipole Moments (Butterworth, London, 1955).

    Google Scholar 

  38. J. J. Sakurai, Invariance Principles and Elementary Particles (University Press, Princeton, 1969).

    Google Scholar 

  39. I. B. Khriplovich and S. K. Lamoreaux, CP Violation without Strangeness:Electric Dipole Moments of Particles, Atoms and Molecules (Springer, Berlin, 1997).

    Google Scholar 

  40. G. C. Branco, L. Lavoura, and J. P. Silva, CP Violation (Clarendon, Oxford, 1999).

    Google Scholar 

  41. E. M. Henley, "CP, T, and CPT symmetries, "in CP Violation in Particle, Nuclear and Astrophysics, M. Beyer, ed. (Springer, Berlin, 2003), pp. 4-26.

    Google Scholar 

  42. P. A. M. Dirac, "Forms of relativistic dynamics," Rev. Mod. Phys. 21 (3), 392-399 (1949).

    Google Scholar 

  43. B. Bernstein and T. Erber, "Reversibility, irreversibility:restorability, non-restorability," J. Phys. A:Math. Gen. 32 (43), 7581-7602 (1999).

    Google Scholar 

  44. M. Mackey, Time's Arrow:The Origins of Thermodynamic Behavior (Springer, New York, 1992).

    Google Scholar 

  45. J. J. Halliwell, J. Perez-Mercader, and W. H. Zurek, eds., Physical Origins of Time Asymmetry (University Press, Cambridge, 1994).

    Google Scholar 

  46. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1961).

    Google Scholar 

  47. W. N. Cottingham and D. A. Greenwood, An Introduction to the Standard Model of Particle Physics (University Press, Cambridge, 1998).

    Google Scholar 

  48. H. D. I. Abarbanel, "Symmetries of the Coulomb potential," in Studies in Mathematical Physics-Essays in Honor of Valentine Bargman, E. H. Lieb, B. Simon, and A. S. Wightman, eds. (University Press, Princeton, 1976).

    Google Scholar 

  49. T. Erber and G. M. Hockney, "Complex systems:Equilibrium con gurations of N equal charges on a sphere," Adv. Chem. Phys. 98, I. Prigogine and S. A. Rice, eds. (Wiley, New York, 1997), pp. 495-594.

    Google Scholar 

  50. H. Cohn, "Stability con gurations of electrons on a sphere," Math. Tables Aids. Comput. 10, 117-120 (1956).

    Google Scholar 

  51. B. Bergersen, D. Boal, and P. Palffy-Muhoray, "Equilibrium con gurations of particles on a sphere:The case of logarithmic interactions," J. Phys. A 27 (7), 2579-2586 (1994).

    Google Scholar 

  52. M. J. Buerger, Contemporary Crystallography (McGraw-Hill, New York, 1970).

    Google Scholar 

  53. O. B. Ramsay, Stereochemistry (Heyden, London, 1981).

    Google Scholar 

  54. M. Nogradi, Stereochemistry (Pergamon, Oxford, 1981).

    Google Scholar 

  55. L. Coffey, J. A. Drapala, and T. Erber, "Chiral Hausdorff metrics and structural spectroscopy in a complex system," J. Phys. A:Math. Gen. 32 (12), 1-22 (1999).

    Google Scholar 

  56. D. Gavelek and T. Erber, "Shadowing and iterative interpolation for Cebysev mixing transformations", J. Comput. Phys. 101, 25-50 (1992).

    Google Scholar 

  57. S. Smale, "A classification of immersions of the two-sphere," Trans. Am. Math. Soc. 90 (2), 281-290 (1959).

    Google Scholar 

  58. A. Phillips, "Turning a surface inside out" Sci. Amer. 214 (5), 112-120 (1966).

    Google Scholar 

  59. G. K. Francis, A Topological Picture Book (Springer, New York, 1987).

    Google Scholar 

  60. N. Max and W. Clifford, "Computer animation of the sphere eversion," ACM J. Comput. Graphics 9, 32-39 (1975).

    Google Scholar 

  61. G. K. Francis, J. Sullivan, R. Kusner, K. Brakke, C. Hartman, and G. Chappell, "The minimax sphere eversion," Visualization and Mathematics (Springer, New York, 1997).

    Google Scholar 

  62. J. M. Sullivan, G. K. Francis, and S. Levy, The Optiverse, (Tape produced by National Center for Supercomputing Applications, Urbana, IL, 1998).

  63. G. K. Francis, private communication.

  64. I. Tinoco Jr. and R. W. Woody, "Optical rotation of oriented helices IV. A free electron on a helix," J. Chem. Phys. 40 (1), 160-165 (1964).

    Google Scholar 

  65. I. Tinoco Jr. and M. P. Freeman, "The optical activity of oriented copper helixes I. Experimental," J. Phys. Chem. 61 (9), 1196-1200 (1957).

    Google Scholar 

  66. K. Mislow, Introduction to Stereochemistry (Benjamin, New York, 1966).

    Google Scholar 

  67. R. Janoschek, Chirality:From Weak Bosons to the á-Helix (Springer, Berlin, 1991).

    Google Scholar 

  68. M. Quack and S. Jans-Burli, Molekulare Thermodynamik und Kinetik (Verlag der Fach-vereine, Zurich, 1986).

    Google Scholar 

  69. W. S. C. Williams, A Introduction to Elementary Particles (Academic, New York, 1961).

    Google Scholar 

  70. W. M. Gibson and B. R. Pollard, Symmetry Principles in Elementary Particle Physics (University Press, Cambridge, 1976).

    Google Scholar 

  71. J. M. Keynes, A Treatise on Probability (MacMillan, London, 1948).

    Google Scholar 

  72. R. S. Atkinson, Stereoselective Synthesis (Wiley, Chichester, 1995).

    Google Scholar 

  73. C. S. Wu, "Parity experiments in beta decays," Rev. Mod. Phys. 31 (3), 783-790 (1959).

    Google Scholar 

  74. R. H. Dalitz, "Strange particle decay processes and the Fermi interaction," Rev. Mod. Phys. 31 (3), 823-833 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erber, T. Reflections on Parity. Foundations of Physics 34, 1515–1540 (2004). https://doi.org/10.1023/B:FOOP.0000044103.06633.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOOP.0000044103.06633.b8

Navigation