Skip to main content
Log in

Strictly Positive Definite Functions on a Real Inner Product Space

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

If \(f(t) = \sum\nolimits_{k = 0}^\infty {a_k t^k } \) converges for all \(.......CONVERSION........\) with all coefficients \(a_k \geqslant {\text{0}}\), then the function \(f(\left\langle {x,\left. y \right\rangle } \right.)\) is positive definite on H×H for any inner product space H. Set K={k: a k >0}. We show that \(f(\left\langle {{\text{x,}}\left. {\text{y}} \right\rangle } \right.)\) is strictly positive definite if and only if K contains the index 0 plus an infinite number of even integers and an infinite number of odd integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berg, J.P.R. Christensen and P. Ressel, Harmonic Analysis on Semigroups (Springer, New York, 1984).

    Google Scholar 

  2. C.J.C. Burges and D.J. Crisp, Uniqueness of the SVM solution, in: NIPS (Neural Information Processing Systems), Vol. 12, eds. S.A. Solla, T.K. Leen and K.-R. Müller (2000) pp. 223–229.

  3. W. Dahmen and C.A. Micchelli, Some remarks on ridge functions, Approx. Theory Appl. 3 (1987) 139–143.

    Google Scholar 

  4. C.H. FitzGerald, C.A. Micchelli and A. Pinkus, Functions that preserve families of positive semidefi-nite matrices, Linear Algebra Appl. 221 (1995) 83–102.

    Google Scholar 

  5. R. Horn and C.R. Johnson, Topics in Matrix Analysis (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  6. G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol. II (Springer, Berlin, 1976).

    Google Scholar 

  7. I.J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942) 96–108.

    Google Scholar 

  8. A.J. Smola, B. Schölkopf and K.-R. Müller, The connection between regularization operators and support vector kernels, Neural Networks 11 (1998) 637–649.

    Google Scholar 

  9. I. Steinwart, On the influence of the kernel on the consistency of support vector machines, J. Machine Learning Res. 2 (2001) 67–93.

    Google Scholar 

  10. I. Steinwart, Support vector machines are universally consistent, Preprint.

  11. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinkus, A. Strictly Positive Definite Functions on a Real Inner Product Space. Advances in Computational Mathematics 20, 263–271 (2004). https://doi.org/10.1023/A:1027362918283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027362918283

Navigation