Skip to main content
Log in

Fourier Transform Spectrum and Term Values for the CO-Stretching Mode of CD3OH Methanol

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The Fourier transform infrared (FTIR) spectrum of the CO-stretching fundamental band of CD3OH has been recorded at a resolution of 0.002 cm-1. Assignments are reported for 35 subbands in the n = 0 ground torsional state, covering K = 0 to 9 for all torsional symmetries plus K = 10 A, and 12 assorted A and E subbands in the n = 1 first excited torsional state ranging from K = 0 up to K = 5. The subband wavenumbers have been fitted to J(J + 1) power-series energy expansions to obtain subband origins and a compact representation of the spectral observations. With the use of known ground-state energies, CO-stretch energy term values have been determined and tabulated. Least-squares fitting of the subband origins to a fourth-order Hamiltonian model for the CO-stretch mode is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Moruzzi, F. Strumia, P. Carnesecchi, R.M. Lees, I. Mukhopadhyay and J.W.C. Johns, Infrared Phys. 29, 583-606 (1989).

    Google Scholar 

  2. G. Moruzzi, B.P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, and F. Strumia, “Microwave, Infrared, and Laser Transitions of Methanol: Atlas of Assigned Lines from 0 to 1258 cm−1,” CRC Press, Boca Raton, FL, 1995.

    Google Scholar 

  3. Li-Hong Xu, R.M. Lees, I. Mukhopadhyay, J.W.C. Johns, and G. Moruzzi, J. Mol. Spectrosc. 157, 447-466 (1993).

    Google Scholar 

  4. A. Lundsgaard, J.C. Petersen, and J. Henningsen, J. Mol. Spectrosc. 167, 131-155 (1994).

    Google Scholar 

  5. I. Mukhopadhyay, R.M. Lees, W. Lewis-Bevan and J.W.C. Johns, J. Chem. Phys. 102, 6444-6455 (1995).

    Google Scholar 

  6. R.M. Lees, I. Mukhopadhyay, A. Predoi, W. Lewis-Bevan, and J.W.C. Johns, J. Chem. Phys. 105, 3406-3418 (1996).

    Google Scholar 

  7. D. Pereira, J.C.S. Moraes, E.M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, and C.A. Massa, Int. J. Infrared Millimeter Waves 15, 1 (1994).

    Google Scholar 

  8. S.C. Zerbetto and E.C.C. Vasconcellos, Int. J. Infrared Millimeter Waves 15, 889 (1994).

    Google Scholar 

  9. I. Mukhopadhyay, M. Mollabashi, and R.M. Lees, J. Opt. Soc. Am. B 14, 2227-2237 (1997), and references therein.

    Google Scholar 

  10. J.C.S. Moraes, J. Mol. Spectrosc. 185, 325-329 (1997).

    Google Scholar 

  11. D.R. Woods, Ph.D. Thesis, University of Michigan, Ann Arbor, 1970.

  12. W.H. Weber, D.H. Leslie, and C.W. Peters, J. Mol. Spectrosc. 89, 214 (1981).

    Google Scholar 

  13. W.H. Weber and P.D. Maker, J. Mol. Spectrosc. 93, 131-153 (1982).

    Google Scholar 

  14. J.C. Petersen and S.E. Choi, Appl. Phys. B 56, 185-191 (1993).

    Google Scholar 

  15. I. Mukhopadhyay, M. Mollabashi, R.M. Lees, and J.W.C. Johns, J. Mol. Spectrosc. 138, 521-540 (1989).

    Google Scholar 

  16. G. Carelli, N. Ioli, A. Moretti, D. Pereira, and F. Strumia, Int. J. Infrared Millimeter Waves 12, 557-571 (1991).

    Google Scholar 

  17. D. Pereira, A. Scalabrin, G.P. Galvao, and K.M. Evenson, Int. J. Infrared Millimeter Waves 13, 497-506 (1992).

    Google Scholar 

  18. R.M. Lees and J.G. Baker, J. Chem. Phys. 48, 5299-5318 (1968).

    Google Scholar 

  19. Y.Y. Kwan and D.M. Dennison, J. Mol. Spectrosc. 43, 291-319 (1972).

    Google Scholar 

  20. Mahmoud Mollabashi, R.M. Les, Li-Hong Xu and M. Bakota, Int. J. Infrared Millimeter Waves 14, 2569-2582 (1993).

    Google Scholar 

  21. Mahmoud Mollabashi, R.M. Lees and J.W.C. Johns, Int. J. Infrared Millimeter Waves 14, 1727-1753 (1993).

    Google Scholar 

  22. G. Moruzzi, Li-Hong Xu, R.M. Lees, B.P. Winnewisser, and M. Winnewisser, J. Mol. Spectrosc. 167, 156-175 (1994).

    Google Scholar 

  23. Adriana Predoi-Cross, Li-Hong Xu, M.S. Walsh, R.M. Lees, M. Winnewisser, and H. Lichau, J. Mol. Spectrosc. 188, 94-101 (1998).

    Google Scholar 

  24. M.S. Walsh, Li-Hong Xu, and.M. Lees, J. Mol. Spectrosc. 188, 85-93 (1998).

    Google Scholar 

  25. T. Kachi and S. Kon, Int. J. Infrared Millimeter Waves 4, 767-777 (1983).

    Google Scholar 

  26. R.M. Lees, J. Mol. Spectrosc. 33, 124-136 (1970).

    Google Scholar 

  27. R.M. Lees, J. Chem. Phys. 59, 2690-2697 (1973).

    Google Scholar 

  28. Li-Hong Xu and R.M. Lees, J. Opt. Soc. Am. B 11, 155-169 (1994).

    Google Scholar 

  29. R.M. Lees and Li-Hong Xu, Phys. Rev. Lett. 84 (2000), in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollabashi, M., Lees, R.M., Xu, LH. et al. Fourier Transform Spectrum and Term Values for the CO-Stretching Mode of CD3OH Methanol. International Journal of Infrared and Millimeter Waves 21, 1061–1083 (2000). https://doi.org/10.1023/A:1026496304827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026496304827

Navigation