Skip to main content
Log in

Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 μM CO2 in C. reinhardtii, C. pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N inC. pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p < 0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C. pyrenoidosa and S. obliquus when exposed to high photon flux density. The photoinhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grownC. pyrenoidosa and S. obliquus. Although pH and pCO2 effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badger M.R., Kaplan A. and Berry J.A. 1980. Internal inor-ganic carbon pool of Chlamydomonas reinhardtii. evidence for a carbon dioxide-concentrating mechanism. Plant Physiol. 66: 407-413.

    Google Scholar 

  • Beardall J., Johnston A. and Raven J.A. 1997. Environmental regulation of CO2-concentrating mechanism in microalgae. Can. J. Bot. 76: 1010-1017.

    Google Scholar 

  • Bowes G. 1993. Facing the inevitable: plants and increasing atmospheric CO2. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 309-332.

    Google Scholar 

  • Burkhardt S., Zondervan I. and Riebesell U. 1999. Effects of CO2 concentration on C: N: P ratio in marine phytoplank-ton: a species comparison. Limnol. Oceanogr. 44: 683-690.

    Google Scholar 

  • Cole J.J., Caraco N.F., Kling G.W. and Kratz T.K. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568-1570.

    Google Scholar 

  • Dubinsky Z., Falkowski G. and Wyman K. 1986. Light harvesting and utilization by phytoplankton. Plant Cell Physiol. 7: 1335-1349.

    Google Scholar 

  • Fujita Y. 1972. Composition of culture media. In: Tamiya H. and Watanabe T. (eds), Experimental Methods of Algae, Nankoto, Tokyo, Japan, pp. 68-104 (in Japanese).

    Google Scholar 

  • Gao K., Aruga Y., Asada K., Ishihara T., Akano T. and Kiyohara M. 1991. Enhanced growth of red alga Porphyra yezoensis Ueda in high CO2 concentrations. J. appl. Phycol. 3: 355-362.

    Google Scholar 

  • Gao K., Aruga Y., Asada K. and Kiyohara M. 1993. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chiliensis. J. appl. Phycol. 5: 563-571.

    Google Scholar 

  • Gao K., Ji Y. and Aruga Y. 1999. Relationship of CO2 concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologia 398/399: 355-359.

    Google Scholar 

  • Gordillo F.J.L., Jimenez C., Figueroa F.L. and Niell F.X. 1999. Effects of increased atmospheric CO2 and N supply on photo-synthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). J. appl. Phycol. 10: 461-469.

    Google Scholar 

  • Hanelt D. 1992. Photoinhibition of photosynthesis in marine macrophytes of the South Chinese Sea. Mar. Ecol. Progr. Ser. 82: 199-206.

    Google Scholar 

  • Hein M. 1997. Inorganic carbon limitation of photosynthesis in lake phytoplankton. Freshwat. Biol. 37: 545-552.

    Google Scholar 

  • Hein M. and Sand-Jensen K. 1997. CO2 increases oceanic primary production. Nature 388: 526-527.

    Google Scholar 

  • Henley W.J. 1993. Measurement and interpretation of photosynthesis light response curve in algae in the context of photoinhibition and diel changes. J. Phycol. 29: 729-739.

    Google Scholar 

  • Jeffrey S.W. and Humphrey G.F. 1975. New spectrophoto-metric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191-194.

    Google Scholar 

  • Kaplan A. and Reinhold L. 1999. CO2 concentrating mechan-isms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 539-570.

    Google Scholar 

  • Kimpel D.L., Togasaki R.K. and Miyachi S. 1983. Carbonic anhydrase in Chlamydomonas reinhardtii I. Localization. Plant Cell Physiol. 24: 255-259.

    Google Scholar 

  • King A.W., Emanuel W.R. and Post W.M. 1992. Projecting future concentrations of atmospheric CO2 with global carbon cycle models: the importance of simulating historical changes. Environ. Manage. 16: 91-108.

    Google Scholar 

  • Krause G.H. 1988. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant. 74: 566-574.

    Google Scholar 

  • Krause G.H. and Weis E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349.

    Google Scholar 

  • Moroney J.V., Husic H.D. and Tolbert N.E. 1985. Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiol. 79: 177-183.

    Google Scholar 

  • Nilsen S. and Johnsen Q. 1982. Effect of CO2,O2 and Diamox on photosynthesis and photorespiration in Chlamydomonas reinhardtii (green alga) and Anacystis nidulans (cyanobacterium, blue-green alga). Physiol. Pl. 56: 273-280.

    Google Scholar 

  • Nimer N.A., Warren M. and Merrett J. 1998. The regulation of photosynthetic rate and activation of extracellular carbonic anhydrase under CO2-limiting conditions in the marine diatomSkeletonemacostatum. Plant Cell Environ. 21: 805-812.

    Google Scholar 

  • Patel B.N. and Merrett M.J. 1986. Regulation of carbonic-anhydrase activity, inorganic-carbon uptake and photosyn-thetic biomass yield in Chlamydomonas reinhardtii. Planta 169: 81-86.

    Google Scholar 

  • Rhee G.Y. and Gotham I.J. 1981. The effect of environmental factors on phytoplankton growth: Temperature and the inter-actions of temperature with nutrient limitation. Limnol. Oceanogr. 26: 635-648.

    Google Scholar 

  • Riebesell U., Wolf-Gladrow D.A. and Smetacek V. 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249-251.

    Google Scholar 

  • Samuelsson G., Lonnerborg A., Rosenqvist E., Gustafsson P. and Öquist G. 1985. Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans. Plant Physiol. 79: 992-995.

    Google Scholar 

  • Shiraiwa Y. and Miyachi S. 1985. Effects of temperature and CO2 concentration on induction of carbonic anhydrase and changes in efficiency of photosynthesis in Chlorella vulgaris 11 h. Plant Cell Physiol. 26: 543-549.

    Google Scholar 

  • Spalding M.H., Critchley C., Govindjee and Orgen W.L. 1984. Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the green alga Chlamydomonas reinhardtii. Photosynthesis Res. 5: 169-176.

    Google Scholar 

  • Stumm W. and Morgan J.J. 1996. Dissolved carbon dioxide. In: Stumm W. and Morgan J.J. (eds), Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, John Wiley & Sons, New York, New York, USA, pp. 148-202.

    Google Scholar 

  • Valiela I., McClelland J., Hauxwell J., Behr P.J., Hersh D. and Foreman K. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42: 1105-1118.

    Google Scholar 

  • Vonshak A., Chanawongse L., Bunnag B. and Tanticharoen M. 1996. Light cclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. J. appl. Phycol. 8: 35-40.

    Google Scholar 

  • Wang Z.H., Luo Y.M., Jiang T.J., Lin Q.Q. and Qi S. 1999. Influence of environmental conditions on growth of Hydrodictyon reticulatum. Chinese J. appl. Ecol. 10(3): 345-349 (in Chinese with English summary).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Gao, K. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). Journal of Applied Phycology 15, 379–389 (2003). https://doi.org/10.1023/A:1026021021774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026021021774

Navigation