Skip to main content
Log in

Arrowroot (Marantha arundinacea) starch as a new low-cost substrate for alkaline protease production

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The feasibility of arrowroot (Marantha arundinacea) starch for alkaline protease production using an alkalophilic Bacillus lentus isolate was evaluated in batch fermentations in shake flasks and in a bioreactor under a range of conditions. A new arrowroot starch-casein medium (pH 10.2) was formulated having a composition (%, w/v): arrowroot starch 1, casein 1, sodium succinate 0.25, NH4Cl 0.05, NaCl 0.05, KH2PO4 0.04, K2HPO4 0.03, MgCl2 0.01, yeast extract 0.01 and Na2CO3 1.05. The isolate produced a maximum protease yield (6754.7 U ml−1) in this medium when grown for 72 h at 250 rev/min and 37 °C. Scaling-up studies in a bioreactor showed a 5-fold increase in alkaline protease yields (31899 U ml−1) at a lower production time of 45 h, aeration of 1 v/v/m and agitation of 400 rev/min at 37 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Banerjee, U.C., Sani, R.K., Azmi, W. & Soni, R. 1999 Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochemistry 35, 213–219.

    Google Scholar 

  • Bartholomew, W.H. 1960 Scale-up of submerged fermentations. Advances in Applied Microbiology 2, 289–300.

    Google Scholar 

  • Chandrasekaran, S. & Dhar, S.C. 1983 A low-cost method for the production of extracellular alkaline proteinase using tapioca starch. Journal of Fermentation Technology 61, 511–514.

    Google Scholar 

  • Fujiwara, N. & Yamamoto, K. 1987 Production of alkaline protease in a low-cost medium by alkalophilic Bacillus sp. and properties of the enzyme. Journal of Fermentation Technology 65, 345–348.

    Google Scholar 

  • Gessesse, A. 1997 The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresource Technology 62, 59–61.

    Google Scholar 

  • Hodgson, J. 1994 The changing bulk biocatalyst market. Biotechnology 12, 789–790.

    Google Scholar 

  • Jasvir, S., Gill, N., Devasahyam, G. & Sahoo, D.K. 1999 Studies on alkaline protease produced by Bacillus sp. NG312. Applied Biochemistry and Biotechnology 76, 57–63.

    Google Scholar 

  • Johnvesly, B., Manjunath, B.R. & Naik, G.R. 2002 Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Bioresource Technology 82, 61–64.

    Google Scholar 

  • Joo, H.S., Kumar, C.G., Park, G.C., Kim, K.T., Paik, S.R. & Chang, C.S. 2002 Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochemistry 38, 155–159.

    Google Scholar 

  • Krulwich, T.A. 1996 Bioenergetics of alkalophilic bacteria. Journal of Membrane Biology 89, 113–125.

    Google Scholar 

  • Krulwich, T.A. & Guffanti, A.A. 1989 The Na+ cycle of extreme alkalophiles: a secondary Na+/H+ antiporter and Na+/solute symporters. Journal of Bioenergetics and Biomembranes 21, 663–678.

    Google Scholar 

  • Kumar, C.G. 2002 Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Letters in Applied Microbiology 34, 13–17.

    Google Scholar 

  • Kumar, C.G., Malik, R.K. & Tiwari, M.P. 1998 Novel enzyme-based detergents: an Indian perspective. Current Science 75, 1312–1318.

    Google Scholar 

  • Kumar, C.G., Malik, R.K., Tiwari, M.P. & Jany, K.D. 1999a Optimal production of Bacillus alkaline protease using a cheese whey medium. Microbiologie des Alimentes et Nutrition 17, 39–48.

    Google Scholar 

  • Kumar, C.G. & Takagi, H. 1999 Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances 17, 561–594.

    Google Scholar 

  • Kumar, C.G., Tiwari, M.P. & Jany, K.D. 1999b Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization. Process Biochemistry 34, 441–449.

    Google Scholar 

  • Labbe, R., Somers, E. & Duncan C. 1976 Influence of starch source on sporulation and enterotoxin production by Clostridium perfringens type A. Applied and Environmental Microbiology 31, 455–457.

    Google Scholar 

  • Lajvardi, A., Mazarin, G.I., Gillespie, M.B., Satchithanandam, S. & Calvert, R.J. 1993 Starches of varied digestibilities differentially modify intestinal function in rats. Journal of Nutrition 123, 2059–2066.

    Google Scholar 

  • Mabrouk, S.S., Hashem, A.M., El-Shayeb, N.M.A., Ismail, A.M.S. & Abdel-Fattah, A.F. 1999 Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415. Bioresource Technology 69, 155–159.

    Google Scholar 

  • Malathi, S. & Chakraborty, R. 1991 Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Applied and Environmental Microbiology 57, 712–716.

    Google Scholar 

  • Paavilainen, S., Makela, M. & Korpela, T. 1995 Proton and carbon inventory during the growth of an alkalophilic Bacillus indicates that protons are independent from acid anions. Journal of Fermentation and Bioengineering 80, 429–433.

    Google Scholar 

  • Peddie, C.J., Cook, G.M. & Morgan, H.W. 1999 Sodium-dependent glutamate uptake by an alkaliphilic, thermophilic Bacillus strain TA2.A1. Journal of Bacteriology 181, 3172–3177.

    Google Scholar 

  • Priest, F.G. 1977 Extracellular enzyme synthesis in the genus Bacillus. Bacteriology Reviews 41, 711–753.

    Google Scholar 

  • Prowe, S.G., van de Vossenberg, J.L.C.M., Driessen, A.J.M., Antranikian, G. & Konings, W.N. 1996 Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. Journal of Bacteriology 178, 4099–4104.

    Google Scholar 

  • Raja, M.K.C. & Sindhu, P. 2000 Properties of steam-treated arrowroot (Maranta arundinacea) starch. Starch/Stärke 52, 471–476.

    Google Scholar 

  • Sawada, J., Yasui, H., Amamoto, T., Yamada, M., Okazaki, T. & Tanaka, I. 1974 Isolation and some properties of anti-proteolytic polypeptides from potato. Agricultural and Biological Chemistry 38, 2559–2561.

    Google Scholar 

  • Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J. & Hecker, M. 1999 Role of CcpAin regulation of the central pathways of carbon catabolism in Bacillus subtilis. Journal of Bacteriology 181, 6996–7004.

    Google Scholar 

  • Tsujii, K. 2002 Donnan equilibria in microbial cell walls: a pH-homeostatic mechanism, in alkaliphiles. Colloids and Surfaces B: Biointerfaces 24, 247–251.

    Google Scholar 

  • van Putten, A.P.B., Spitzenberger, F., Kretzmer, G., Hitzmann, B., Dors, M., Simutis, R. & Schugerl, K. 1996 Improvement of the production of subtilisin Carlsberg alkaline protease by Bacillus licheniformis by on-line process monitoring and control in a stirred tank reactor. Journal of Biotechnology 49, 83–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, C.G., Parrack, P. Arrowroot (Marantha arundinacea) starch as a new low-cost substrate for alkaline protease production. World Journal of Microbiology and Biotechnology 19, 757–762 (2003). https://doi.org/10.1023/A:1025156105148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025156105148

Navigation