Skip to main content
Log in

An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A finite difference time domain (FDTD) study of two-dimensional photonic crystals containing nonlinear materials is presented in this paper. An appropriate Z-transform oriented formulation of the FDTD method for the simulation of third-order nonlinear Kerr- and Raman-type media is analyzed and applied to model nonlinear photonic crystal waveguide structures. For their reflectionless termination a novel perfectly matched layer (PML) is proposed and evaluated comparatively to other periodic and inhomogeneous absorbers. Furthermore, the absorbing efficiency of the proposed PML is investigated varying its parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayindir, M., B. Temelkuran and E. Ozbay. Appl. Phys. Lett. 77 3902, 2000.

    Google Scholar 

  • Berenger, J.-P. J. Comput. Phys. 114 185, 1994.

    Google Scholar 

  • El-Kady, I., M.M. Sigalas, R. Biswas and K.M. Ho. IEEE J. Lightwave Tech. 17 2042, 1999.

    Google Scholar 

  • Fang, J. and Z. Wu. IEEE Trans. Microwave Theory Tech. 44 2216, 1996.

    Google Scholar 

  • Joannopoulos, J.D., R.D. Meade and J.N. Winn. Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

    Google Scholar 

  • Joseph, R.M. and A. Taflove. IEEE Trans. Antennas Prop. 45, 364, 1997.

    Google Scholar 

  • Kelly, P.K. and M. Piket-May. IEEE J. Lightwave Tech. 17 1008, 1999.

    Google Scholar 

  • Koshiba, M., Y. Tsuji and S. Sasaki. IEEE Microwave Wireless Comp. Lett. 11 152, 2001.

    Google Scholar 

  • Mekis, A., J.C. Chen, I. Kurland, S. Fan, P. Villeneuve and J.D. Joannopoulos. Phys. Rev. Lett. 77 3787, 1996.

    Google Scholar 

  • Mekis, A., S. Fan and J.D. Joannopoulos. IEEE Microwave Guided Wave Lett. 9 502, 1999.

    Google Scholar 

  • Mingaleev, S. and Y. Kivshar. Opt. Photon. News 48, 2002.

  • Qiu, M. and S. He. Physica B 299 187, 2001.

    Google Scholar 

  • Scholz, S., O. Hess and R. Ruhle. Opt. Expr., 3 28, 1998.

    Google Scholar 

  • Stoffer, R., H.J.W.M. Hoekstra, R.M. De Ridder, E. Van Groesen and F.P.H. Van Beckum. Opt. Quant. Electron. 32 947, 2000.

    Google Scholar 

  • Sullivan, D.M. IEEE Trans. Microwave Theory Tech. 43 676, 1995.

    Google Scholar 

  • Taflove, A. Advances in Computational Electrodynamics, Artech House, Norwood, MA, 1998.

    Google Scholar 

  • Thèvenot, M., A. Reineix and B. Jecko. J. Opt. A: Pure Appl. Opt. 1, 495, 1999.

    Google Scholar 

  • Tanaka, T., S. Noda, A. Chutinan, T. Asano and N. Yamamoto. Opt. Quant. Electron. 34 37, 2002.

    Google Scholar 

  • Tran, P. Optics Lett. 21, 1138, 1996.

    Google Scholar 

  • Zhao, A.P. Application of the material-independent PML absorbers to the FDTD analysis of electromagnetic waves in nonlinear media. IEEE Trans. Microwave Theory Tech. 46 1511, 1998.

    Google Scholar 

  • Ziolkowski, R.W. and M. Tanaka. Opt. Quant. Electron. 31 843, 1999.

    Google Scholar 

  • Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58 2059, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmidou, E.P., Tsiboukis, T.D. An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials. Optical and Quantum Electronics 35, 931–946 (2003). https://doi.org/10.1023/A:1025122517879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025122517879

Navigation