Skip to main content
Log in

Radiation Electrification of Spacecraft Leeward Surfaces by Auroral Electrons in the Ionosphere

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

A methodology of the physical modeling of radiation electrification of the leeward surfaces of the materials used to construct space vehicles by auroral electrons, when the vehicles are flown supersonically around by the ionospheric plasma at low and middle heights, is developed. Based on laboratory modeling, numerical experiments, and in situ observations, the dependencies of charging levels and equilibrium potentials on the ratio of the auroral electron density to the positive ions in the near wake behind the body and in the undisturbed plasma are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gussenhoven, M.S., Hardy, D.A., Rich, F., et al., High-Level Spacecraft Charging in the Low-Altitude Polar Auroral Environment, J. Geophysical Research, 1985, vol. 90, no. 11, p. 11009.

    Google Scholar 

  2. Anderson, P.C. and Koons, H.C., Spacecraft Charging Anomaly at Low-Altitude Satellite in an Aurora, J. Spacecraft and Rockets, 1996, vol. 33, no. 5, p. 734.

    Google Scholar 

  3. Zaidel', R.M., Effects of Dielectric Electrification in Onboard Communication Lines of Spacecraft, Kosm. Issled., 1993, vol. 31, no. 4, p. 123.

    Google Scholar 

  4. Zaidel', R.M., The Effect of Inhomogeneous Density of Charges Produced on a Spacecraft Surface, Kosm. Issled., 1991, vol. 29, no. 1, p. 149.

    Google Scholar 

  5. Laframboise, J.G. and Luo, J., High-Voltage Polar Orbit and Beam-Induced Charging of a Dielectric Spacecraft: a Wake-Induced Barrier Effect Mechanism, J. Geophys. Res., 1989, vol. 94, no. 7, p. 9033.

    Google Scholar 

  6. Wang, J., Lenng, P., Garret, H., and Murphy, G., Multibody-Plasma Interactions: Charging in the Wake, J. Spacecraft and Rockets, 1994, vol. 31, no. 5, p. 889.

    Google Scholar 

  7. Al'pert, Ya.L., Gurevich, A.V., and Pitaevskii, L.P., Iskusstvennye Sputniki v Razrezhennoi Plazme (Artificial Satellites in a Rarefied Plasma), Moscow: Nauka, 1964.

    Google Scholar 

  8. Antonov, V.M. and Ponomarenko, A.G., Laboratornye issledovaniya effektov elektrizatsii kosmicheskikh apparatov (Laboratory Studies of Effects of Spacecraft Electrification), Novosibirsk: Nauka, 1992.

    Google Scholar 

  9. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continua), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  10. Shuvalov, V.A., Modelirovanie vzaimodeistviya tel s ionosferoi (Modeling of Interactions of Bodies with the Ionosphere), Kiev: Nauk. Dumka, 1995.

    Google Scholar 

  11. Shuvalov, V.A., Priimak, A.I., and Gubin, V.V., Radiative Electrification of Spacecraft Construction Elements: Physical Modeling of Charge Accumulations and Neutralization, Kosm. Issled., 2001, vol. 39, no. 1, pp. 18–26.

    Google Scholar 

  12. Sajben, M. and Blumental, D., Experimental Study of a Rarefied Plasma Stream and Its Interaction with Simple Bodies, AJAA Paper, 1969, no. 69–79, p. 13.

  13. Khester, S. and Sonin, A., Laboratory Studies of a Wake after an Ionosphere Satellite, Raketn. Tekhn. Kosmonavt., 1970, vol. 8, no. 6, p. 125.

    Google Scholar 

  14. Nosachev, L.V. and Skvortsov, V.V., Investigation of Slow Ions in a Rarefied Plasma Stream Using a Multi-Electrode Probe, Uchenye Zapiski TsAGI, 1973, vol. 4, no. 3, p. 32.

    Google Scholar 

  15. Pigache, D., A Laboratory Simulation of the Ionospheric Plasma, AJAA Paper, 1971, no. 71–608, p. 13.

  16. Nosachev, L.V. and Skvortsov, V.V., A Study of Ion Current Distribution in a Wake Produced by Cylindrical and Spherical Bodies in a Stream of Argon and Nitrogen Plasma, Uchenye Zapiski TsAGI, 1970, vol. 1, no. 5, p.-39.

    Google Scholar 

  17. Shuvalov, V.A., Flow of a Stream of Nonequilibrium Rarefied Plasma over a Sphere, Geomagn. Aeron., 1979, vol. 19, no. 6, p. 994.

    Google Scholar 

  18. Morgan, M.A., Chan, C., and Allen, R.C., A Laboratory Study of the Electron Temperature in the Near Wake of a Conducting Body, Geophys. Res. Lett., 1987, vol. 14, no. 11, p. 1170.

    Google Scholar 

  19. Parker, L.W., Differential Charging and Sheath Asymmetry of Nonconducting Spacecraft due to Plasma Flows, J. Geophys. Res., 1978, vol. 83, no. 9, p. 4873.

    Google Scholar 

  20. Knudsen, W.C. and Harris, K.K., Ion-Impact-Produced Secondary Electron Emission and Its Effect on Space Instrumentation Mechanism, J. Geophys. Res., 1973, vol. 78, no. 7, p. 1145.

    Google Scholar 

  21. Wang, J. and Hastings, D.E., Ionospheric Plasma Flow over Large High-Voltage Space Platforms. II: the Formation and Structure of Plasma Wake, Phys. Fluids B, 1992, vol. 4, no. 6, p. 1615.

    Google Scholar 

  22. Gurevich, A.V., Pitaevskii, L.P., and Smirnova, V.V., Aerodynamics in the Ionosphere, Usp. Fiz. Nauk, 1969, vol. 99, no. 1, p. 3.

    Google Scholar 

  23. Samir, V. and Stone, N., Shuttle-Era Experiments in the Area Plasma Flow Interaction with Body in Space, Acta Astronautica, 1980, vol. 7, no. 10, p. 1091.

    Google Scholar 

  24. Smirnova, V.V., A Discrete Model of Rarified Plasma Plane Flowing over Bodies, Geomagn. Aeron., 1971, vol. 11, no. 2, p. 230.

    Google Scholar 

  25. Samir, V., Bodies in Flowing Plasma Spacecraft Measurements, Adv. Space Res., 1981, vol. 1, MS, p. 373.

    Google Scholar 

  26. Samir, V., Weldman, P.J., Rich, F., et al., About the Parametric Interplay between Ionic Mach Number, Body Size, and Satellite Potential in Determining the Ion Depletion in the S3–2 Satellite, J. Geophys. Res., 1981, vol. 86, no. 13, p. 11161.

    Google Scholar 

  27. Shuvalov, V.A., Structure of Near Wake behind a Cylinder in a Rarefied Plasma Stream, Geomagn. Aeron., 1980, vol. 20, no. 3, p. 425.

    Google Scholar 

  28. Samir, V., Stone, N.A., and Wright, K.H., On Plasma Disturbances Caused by the Motion of the Space Shuttle and Small Satellite: a Comparison of in Situ Observation, J. Geophys. Res., 1986, vol. 91, no. 1, p. 277.

    Google Scholar 

  29. Murphy, G.B., Reasoner, D.L., Tribble, A., et al., The Plasma Wake of the Shuttle Orbiter, J. Geophys. Res., 1989, vol. 94, no. 6, p. 6866.

    Google Scholar 

  30. Samir, V., Gordon, R., Brace, L., and Theis, R., The Near-Wake Structure of the Atmosphere Explorer-C (AE-C) Satellite: A Parametric Investigation, J. Geophys. Res., 1979, vol. 84, no. 2, p. 513.

    Google Scholar 

  31. Samir, V., Kaufman, Y., Brace, L., and Brinton, H., The Dependence of Ion Density in the Wake of the AE-C Satellite on the Ratio Body Size to Debye Length in on [O+]-Dominated Plasma, J. Geophys. Res., 1979, vol. 84, no. 2, p. 513.

    Google Scholar 

  32. Senbetu, L. and Henley, J.R., Distribution of Plasma Density and Potential around a Mesothermal Ionosphere Object, J. Geophys. Res., 1989, vol. 94, no. 5, p. 5441.

    Google Scholar 

  33. Isensee, U., Lehz, W., and Maasberg, H., A Numerical Model to Calculate the Wake Structure of a Spacecraft under Ionospheric Conditions, Adv. Space Res., 1981, vol. 1, no. 2, p. 49.

    Google Scholar 

  34. Labramboise, J., Theory of Spherical and Cylindrical Langmuir Probe in a Collisionless Plasma at Rest, in Rarefied Gas Dynamics, New York: Academic, 1965, vol. 2, p. 22.

    Google Scholar 

  35. Scharfman, W., Comparison of a Modified Langmuir Probe Analysis with Computer Solutions of Electrostatic Probes, Phys. Fluids, 1968, vol. 11, no. 4, p. 689.

    Google Scholar 

  36. Sharfman, I. and Talbot, U., Using Ion Probes under Conditions of a Supersonic Stream of Plasma, Raketnaya tekhnika i kosmonavtika, 1970, vol. 8, no. 6, p. 97.

    Google Scholar 

  37. Langmuir, J. and Blodgett, K., Currents Limited by Space Charge between Coaxial Cylinders, Phys. Rev., 1923, vol. 22, no. 4, p. 317.

    Google Scholar 

  38. Hill, J.R. and Wiipple, E.K., Electrification of Large Structures in Space as Applied to the Problem of Space Flights with Solar Sail, Aerokosmich. Tekh., 1986, no. 3, p. 122.

  39. Davies, R.E. and Dennison, J.R., Evolution of Secondary Electron Emission Characteristics of Spacecraft Surface, J. Spacecraft and Rockets, 1998, vol. 34, no. 4, p.-571.

    Google Scholar 

  40. Bronshtein, I.M., and Fraiman, B.S., Vtorichnaya elektronnaya emissiya (Secondary Electron Emission), Moscow: Nauka, 1969.

    Google Scholar 

  41. Gurevich, A.V. and Shvartsburg, A.B., Nelineinaya Teoriya Rasprostraneniya Radiovoln v Ionosfere (Nonlinear Theory of Radiowave Propagation in the Ionosphere), Moscow: Nauka, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuvalov, V.A., Kochubei, G.S., Priimak, A.I. et al. Radiation Electrification of Spacecraft Leeward Surfaces by Auroral Electrons in the Ionosphere. Cosmic Research 41, 413–423 (2003). https://doi.org/10.1023/A:1025018029138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025018029138

Keywords

Navigation