Skip to main content
Log in

Multifunctionality of Active Centers in (Amm)oxidation Catalysts: From Bi–Mo–O x to Mo–V–Nb–(Te, Sb)–O x

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic centers in selective (allylic) oxidation and ammoxidation catalysts are multimetallic and multifunctional. In the historically important bismuth molybdates, used for propylene (amm)oxidation, they are composed of (Bi3+)(Mo6+)2 complexes in which the Bi3+ site is associated with the α-H abstraction and the (Mo6+)2 site with the propylene chemisorption and O or NH insertion. An updated reaction mechanism is presented. In the Mo–V–Nb–Te–O x systems, three crystalline phases (orthorhombic Mo7.5V1.5NbTeO29, pseudohexagonal Mo6Te2VO20, and monoclinic TeMo5O16) were identified, with the orthorhombic phase being the most important one for propane (amm)oxidation. Its active centers contain all necessary key catalytic elements (2V5+/Mo6+, 1V4+/Mo5+, 2Mo6+/Mo5+, 2Te4+) for this reaction wherein a V5+ surface site (V5+ = O ↔ 4+V–O) is associated with paraffin activation, a Te4+ site with α-H abstraction once the olefin has formed, and a (Mo6+)2 site with the NH insertion. Four Nb5+ centers, each surrounded by five molybdenum octahedra, stabilize and structurally isolate the catalytically active centers from each other (site isolation), thereby leading to high selectivity of the desired acrylonitrile product. A detailed reaction mechanism of propane ammoxidation to acrylonitrile is proposed. Combinatorial methodology identified the nominal composition Mo0.6V0.187Te0.14Nb0.085O x for maximum acrylonitrile yield from propane, 61.8% (86% conversion, 72% selectivity at 420 °C). We propose that this system, composed of 60% Mo7.5V1.5NbTeO29, 40% Mo6Te2VO20, and trace TeMo5O16, functions with a combination of compositional pinning of the optimum orthorhombic Mo7.5V1.5±x Nby Tez O29±δ phase and symbiotic mop-up of olefin intermediates through phase cooperation. Under mild reaction conditions, a single optimum orthorhombic composition might suffice as the catalyst; under demanding conditions this symbiosis is additionally required. Improvements in catalyst performance could be attained by further optimization of the elemental distributions at the active catalytic center of Mo7.5V1.5NbTeO29, by promoter/modifier substitutions, and incorporation of compatible cocatalytic phases (preferably epitaxially matched). High-throughput methods will greatly accelerate the rational catalyst design processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Grasselli, in: Handbook of Heterogeneous Catalysis, Vol. V, eds. G. Ertl, H. Knoezinger and J. Weitkamp (1997) p. 2303.

  2. R.K. Grasselli, Proceedings of DGMK Conference (Hamburg, Germany, 2001) p. 147

  3. R.K. Grasselli, La Chimica e l'Industria, 83 (2001) 25.

    Google Scholar 

  4. R.K. Grasselli, Top. Catal. 21 (2002) 79.

    Google Scholar 

  5. R.K. Grasselli, D.D. Suresh and H.F. Hardman, US Patent 4,139,552 (1979).

  6. R.K. Grasselli and H.F. Hardman, US Patent 4,505,001 (1985).

  7. D.D. Suresh, M.S. Friedrich and M.J. Seely, US Patent 5,212,137 (1993).

  8. Y. Sasaki, T. Nakamura, Y. Nakamura, K. Moriya, H. Utsumi and S. Saito, US Patent 4,370,279 (1983).

  9. A.T. Guttmann, R.K. Grasselli and J.F. Brazdil, US Patent 4,746,other1 (1988)

  10. US Patent 4,788,other7 (1988)

  11. US Patent 4,797,381 (1989).

  12. M. Hatano and A. Kayo, European Patent 318,295 (1988).

    Google Scholar 

  13. T. Ushikubo, K. Oshima, A. Kayo, T. Umezawa, K. Kiyona and I. Sawaki, European Patent 529,853 (1992).

    Google Scholar 

  14. H. Hinago, S. Komada, and A.K. Kogyo, US Patent 6,063,728 (2000).

  15. R.K. Grasselli, Catal. Today 49 (1999) 141.

    Google Scholar 

  16. J.L. Callahan and R.K. Grasselli, AIChE J. 9 (1963) 755.

    Google Scholar 

  17. R.K. Grasselli, Top. Catal. 15 (2001) 93.

    Google Scholar 

  18. R.K. Grasselli, Appl. Catal. 15 (1985) 127.

    Google Scholar 

  19. P. DeSantoJr., D.J. Buttrey, R.K. Grasselli, C.G. Lugmair, A.F. VolpeJr., B.H. Togy and T Vogt, Top. Catal.; this issue.

  20. M. Egishara, K. Matsuo, S. Kawaga and T. Seiyama, J. Catal. 58 (1979) 409.

    Google Scholar 

  21. D.J. Buttrey, D.A. Jefferson and J.M. Thomas, Phil. Mag. A 53 (1986) 897.

    Google Scholar 

  22. R.K. Grasselli and J.D. Burrington, Adv. Catal. 30 (1981) 133.

    Google Scholar 

  23. J.D. Burrington, C.T. Kartisek and R.K. Grasselli, J. Catal. 81 (1983) 489.

    Google Scholar 

  24. Y.H. Jang and W.A. GoddardIII, Top. Catal. 15 (2001) 273.

    Google Scholar 

  25. M. Aouine, J.L. Duboise and J.M.M. Millet, Chem. Commun. (2001) 1180.

  26. J.M.M. Millet, H. Roussel, A. Pigamo, J.L. Dubois and J.C. Jumas, Appl. Catal. A: Gen. 6021 (2002) 1.

    Google Scholar 

  27. K. Oshihara, T. Hisano and W. Ueda, Top. Catal. 15 (2001) 153.

    Google Scholar 

  28. A.F. van den Elzen and G.D. Rieck, Acta Crystallogr., Sect. B 29 (1973) 2433.

    Google Scholar 

  29. A.W. Sleight, K. Aykan and D.B. Rogers, J. Solid State Chem. 13 (1975) 231.

    Google Scholar 

  30. J.F. Brazdil, L.C. Glaeser and R.K. Grasselli, J. Catal. 81 (1983) 142.

    Google Scholar 

  31. J.F. Brazdil and R.K. Grasselli, J. Catal. 66 (1980) 66.

    Google Scholar 

  32. P.L. Gai, Acta Crystallogr., Sect. B, Struct. Sci. 53 (1997) 346.

    Google Scholar 

  33. A.W. Sleight, in: Advanced Materials in Catalysis, eds. J.J. Burton and R.L. Garten (Academic Press, New York, 1977) p. 181.

    Google Scholar 

  34. J.F. Brazdil, R.G. Teller, R.K. Grasselli and E. Kostiner, in: ACS Symp. Ser. 279, eds. R.K. Grasselli and J.F. Brazdil (1985) p. 57.

  35. P.L. Gai, Top. Catal. 21 (2002) 161.

    Google Scholar 

  36. R. Schloegl, Chem.-Ing.-Tech. 74 (2002) 552.

    Google Scholar 

  37. G.J. Hutchings, J.A. Lopez-Sanchez, J.K. Bartley, J.M. Webster, A. Burrows, C.J. Kiely, A.F. Carley, C. Rhodes, M. Haevecker, A. Knop-Gericke, R.W. Mayer, R. Schloegl, J.C. Volta and M. Poliakoff, J. Catal. 208 (2002) 197.

    Google Scholar 

  38. R.K. Grasselli, in: Surface Properties and Catalysis by Non-Metals, eds. J. Bonelle, B. Delmon, and E. Derouane, (D. Reidel, Dordrecht[AQ18], 1983) p. 273.

    Google Scholar 

  39. A. Andersson, S.L.T. Andersson, G. Centi, R.K. Grasselli, M. Sanati and F. Trifiro, in: Proceedings 10th Int. Congr. Catal., eds. L. Guczi, F Solymosi and P. Tetenyi (Akademiai Kiado, Budapest, 1992) A, p. 691.

    Google Scholar 

  40. H. Bluhm, M. Haevecker, E. Kleimenov, A. Knop-Gericke, A. Liskowski, R. Schloegl and D. Su, Top. Catal.; this issue.

  41. A. Hagemeyer, B. Jandeleit, Y Liu, D.M. Poojary, H.W. Turner, A.F. VolpeJr. and W.H. Weinberg, Appl. Catal. A: Gen. 221 (2001) 23

    Google Scholar 

  42. R. Borade, D. Poojary and X. Zhau, US Patent 6,395,other2 (2002)

  43. S. Guan, L. van Erden, H. Haushalter, X. Zhou, X. Wang and R. Srinivasen, European Patent 1,001,846 (2002), US Patent 6,149,882 (2002).

  44. J. Holmberg, R.K. Grasselli and A. Andersson, Top. Catal.; this issue.

  45. P. DeSantoJr., D.J. Buttrey and R.K. Grasselli, ACS Symp. Ser. (2003); in press.

  46. T. Ushikubo, K. Kayou and M. Hatano, Stud. Surf. Sci. Catal. 112 (1997) 473.

    Google Scholar 

  47. T. Ushikubo, K. Oshima, T. Numazawa, M. Vaarkamp and I. Sawaki, Stud. Surf. Sci. Catal. 121 (1999) 339.

    Google Scholar 

  48. T. Ushikubo, Catal. Today 57 (2000) 331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasselli, R.K., Burrington, J.D., Buttrey, D.J. et al. Multifunctionality of Active Centers in (Amm)oxidation Catalysts: From Bi–Mo–O x to Mo–V–Nb–(Te, Sb)–O x . Topics in Catalysis 23, 5–22 (2003). https://doi.org/10.1023/A:1024859917786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024859917786

Navigation