Skip to main content
Log in

Structure and Physicochemical Properties of Glasses in the Li2S–LiPO3 System

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The temperature–concentration dependence of the electrical conductivity of glasses in the Li2O–LiPO3 and Li2S–LiPO3 systems is investigated. With the use of the Tubandt method, it is demonstrated that the electric current in glasses of these systems is provided by migration of lithium ions. The concentration dependence of the electrical conductivity is interpreted using the obtained data on the IR absorption spectra, density, microhardness, ultrasonic velocity, etc. It is found that the electrical conductivity of glasses in the Li2S–LiPO3 system is more than 103 times higher than that in pure LiPO3. The observed increase in the electrical conductivity is explained by the formation of sulfur-containing polar structural–chemical groupings of the Li+[SPO3/2] type, whose dissociation energy is lower than that of similar oxide polar structural fragments. This results in an increase in the number of lithium ions involved in the electricity transport due to an increase in the degree of dissociation of polar structural–chemical units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pronkin, A.A., Study in the Field of Physical Chemistry of Halide-Containing Glasses, Doctoral (Chem.) Dissertation, Leningrad: Leningrad Technological Institute, 1979.

    Google Scholar 

  2. Myuller, R.L., Elektroprovodnost' stekloobraznykh veshchestv (Electrical Conductivity of Vitreous Compounds), Leningrad: Leningr. Gos. Univ., 1968.

    Google Scholar 

  3. Ravaine, D., Glasses for Electrochemical Devices, in Stekloobraznoe sostoyanie(The Vitreous State), Leningrad: Nauka, 1983, pp. 180–188.

    Google Scholar 

  4. Button, D.P., Tandon, R.F., Tuller, H.L., and Uhlman, D.R., Fast Li+ Ion Conductance in Chloroborate Glasses: II. Diborate and Metaborates, Solid State Ionics, 1981, vol. 5, part I, pp. 685–688.

    Google Scholar 

  5. Pronkin, A.A., Naraev, V.N., Tsoi Tong Bin, and Eliseev, S.Yu., Electrical Conductivity of Fluorine-and Chlorine-Containing Sodium Borate Glasses, Fiz. Khim. Stekla, 1992, vol. 18, no. 3, pp. 52–63 [Vov. J. Glass Phys. Chem. (Engl. transl.), 1992, vol. 18, no. 3, pp. 304–309].

    Google Scholar 

  6. Barrou, B., Ribes, M., Ravaine, D., and Satour, I.M., Synthese et etude des propertites electriques de nouveaux verres a conductivite ionique eleves, Silicate Ind., 1979, vol. 44, no. 12, pp. 275–281.

    Google Scholar 

  7. Barroy, B., Ribes, M., Maurm, M., et al., Glass Formation Region, Structure and Ionic Conduction in the Na2S-GeS2 System, J. Non-Cryst. Solids, 1980, vol. 37, no. 1, pp. 1–14.

    Google Scholar 

  8. Maluqani, I.P., Fanys, B., Mercier, R., et al., De nouveaux verres conducteurs l'ion lithium et leurs applications des generateurs electrochimiques, J. Solid State Ionics, 1983, vols. 9–10, no. 1, pp. 659–665.

    Google Scholar 

  9. Zaretskaya, G.N., Pronkin, A.A., and Il'in, A.A., Physicochemical Properties of Glasses in the Na2O-Na2S-P2O5 System, Fiz. Khim. Stekla, 1987, vol. 13, no. 3, pp.–464–467.

    Google Scholar 

  10. Baud, G. and Besse, I.P., Superionic Conducting Glasses; Glass Formation and Conductivity in the System AgPO3-Ag2S, J. Am. Ceram. Soc., 1981, vol. 64, no. 4, pp. 242–244.

    Google Scholar 

  11. Handbuch der prüaparativen anorganischen Chemie, Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1954, vol. 2. Translated under the title Rukovodstvo po neorganicheskomu sintezu, Moscow: Mir, 1985.

  12. Pronkin, A.A., Murin, I.V., Sokolov, I.A., Ustinov, Yu.N., and Loseva, M.N., Physicochemical Properties of Glasses in the Li2O-P2O5 System, Fiz. Khim. Stekla, 1997, vol. 23, no. 5, pp. 547–554 [Glass Phys. Chem. (Engl. transl.), 1997, vol. 23, no. 5, pp. 383–388].

    Google Scholar 

  13. Mamontova, T.N., Muranov, Kn.K., Vinogradova, G.Z., et al., A Study of Optical Properties and Photoluminescence of Glasses in the Ca-P-S System, Phys. Status Solidi A, 1986, vol. 93, no. 2, pp. 635–648.

    Google Scholar 

  14. Van Ass, H.M.I.M and Stevels, I.M., The Influence of Dissolved Heavy Water on the Internal Friction of Lithium Metaphosphate Glasses Containing 1% Potassium Metaphosphate,J. Non-Cryst. Solids, 1974, vol. 16, no. 2, pp. 161–170.

    Google Scholar 

  15. Martin, S.W. and Angell, C.A., DC and AC Conductivity in Wide Composition Range Li2O-P2O5 Glasses, J. Non-Cryst. Solids, 1986, vol. 83, pp. 185–207.

    Google Scholar 

  16. Al-Rihabi Hamman, A. and Souquet, I.L., Conductivity electrique de mataphosphats vitreux et cristallises, C. R. Acad. Sci., 1979, vol. 288, no. 23, pp. 549–552.

    Google Scholar 

  17. Ravaine, D., Glasses as Solid Electrolytes, J. Non-Cryst. Solids, 1980, vols. 38–39, pp. 353–358.

    Google Scholar 

  18. Mazurin, O.V., Strel'tsina, M.V., and Shvaiko-Shvaikovskaya, T.P., Svoistva stekol i stekloobrazuyushchikh rasplavov: Spravochnik (A Handbook on the Properties of Glasses and Glass-Forming Melts), Leningrad: Nauka, 1987, vol. 5.

    Google Scholar 

  19. Kanchieva, O.N., Komarova, N.V., Nemilov, S.V., and Tagantsev, D.K., Effect of Water Content on the Viscosity of Vitreous Na2O · 2SiO2, PbO · 2B2O3, and CaO · P2O5, Fiz. Khim. Stekla, 1980, vol. 6, no. 4, pp. 408–414.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, I.A., Il'in, A.A., Tarlakov, Y.P. et al. Structure and Physicochemical Properties of Glasses in the Li2S–LiPO3 System. Glass Physics and Chemistry 29, 282–290 (2003). https://doi.org/10.1023/A:1024438200216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024438200216

Keywords

Navigation