Skip to main content
Log in

Photokilling Squamous Carcinoma Cells SCCVII with Ultrafine Particles of Selected Metal Oxides

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The ability of ultrafine particles of TiO2, WO3 and iron-doped TiO2 to kill cancer cells in the presence of UV irradiation was investigated. The best photokilling effect on carcinoma cells SCVII cultured in vitro showed iron-doped TiO2 ultrafine particles synthesized by the sol-gel procedure with starting chemicals Ti(IV)-isopropoxide and anhydrous Fe(II)-acetate. It was found that a small particle size and high dispersity influenced citotoxicity and photocatalytic efficiency. The remarkable photokiling effect of highly iron-doped TiO2 ultrafine particles (the molar ratio Fe/Ti = 0.136) in the presence of UV irradiation was observed. The influence of ultrafine metal oxide particles on the inhibition of cancer cell proliferation was measured using a 3H-thymidine incorporation test. The possible mechanism involved in the photokilling of carcinoma cells with ultrafine particles of selected metal oxides was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Tryk, A. Fujishima, and K. Honda, Electrochim. Acta 45, 2363 (2000).

    Google Scholar 

  2. M.A. Malati, Environ. Technol. 16, 1093 (1995).

    Google Scholar 

  3. T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, FEMS Microbiol. Lett. 29, 211 (1985).

    Google Scholar 

  4. R. Cai, Y. Kubota, T. Shuin, H. Sakai, K. Hashimoto, and A. Fujishima, Cancer Res. 52, 2346 (1992).

    Google Scholar 

  5. Ning-ping Huang, Min-hua Xu, Chun-wei Yuan, and Rui-rong Yu, J. Photochem. Photobiol. A: Chem. 108, 229 (1997).

    Google Scholar 

  6. C. Kormann, D.W. Bahnemann, and M.R. Hoffmann, J. Phys. Chem. 92, 5196 (1988).

    Google Scholar 

  7. B. O'Regan, J. Moser, M. Ardesson, and M. Grätzel, J. Phys. Chem. 94, 8720 (1990).

    Google Scholar 

  8. C.-Y. Wang, D.W. Bahnemann, and J.K. Dohrmann, Chem. Commun. 1539 (2000).

  9. S. Musić, M. Gotić, M. Ivanda, S. Popović, A. Turković, R. Trojko, A. Sekulić, and K. Furić, Mater. Sci. Engin. B47, 33 (1997).

    Google Scholar 

  10. N. Šijaković-Vujičcić, M. Gotić, S. Musić, M. Ivanda, and S. Popović, submitted for publication in J. Sol-Gel Sci. Technol.

  11. M. Gotić, M. Ivanda, S. Popović, and S. Musić, Mater. Sci. Engin. B77, 193 (2000).

    Google Scholar 

  12. G.R. Bamwenda, K. Sayama, and H. Arakawa, J. Photochem. Photobiol. A: Chem. 122, 175 (1999).

    Google Scholar 

  13. A. Hagfeldt and M. Grätzel, Chem. Rev. 95, 49 (1995).

    Google Scholar 

  14. M.I. Litter and J.A. Navío, J. Photochem. Photobiol. A: Chem. 84, 183 (1994).

    Google Scholar 

  15. J.A. Navío, G. Colón, M.I. Litter, and G.N. Bianco, J. Mol. Catal. A: Chemical 106, 267 (1996).

    Google Scholar 

  16. K.T. Ranjit and B. Viswanathan, J. Photochem. Photobiol. A: Chem. 108, 79 (1997).

    Google Scholar 

  17. N.J. Peill, L. Bourne, and M.R. Hoffmann, J. Photochem. Photobiol. A: Chemical 108, 221 (1997).

    Google Scholar 

  18. B. Pal, M. Sharon, and G. Nogami, Mater. Chem. Phys. 59, 254 (1999).

    Google Scholar 

  19. H. Sakai, E. Ito, R.-X. Cai, T. Yoshioka, Y. Kubota, K. Hashimoto, and A. Fujishima, Biochim. Biophys. Acta 1201, 259 (1994).

    Google Scholar 

  20. D.M. Blake, P.-C. Maness, Z. Huang, E.J. Wolfrum, W.A. Jacoby, and J. Huang, Sep. Purif. Methods 28, 1 (1999).

    Google Scholar 

  21. P.-C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, and W.A. Jacoby, Appl. Environ. Microbiol. 65, 4094 (1999).

    Google Scholar 

  22. J. Moser, M Grätzel, and R. Gallay, Helv. Chim. Acta 70, 1596 (1987).

    Google Scholar 

  23. Z. Zhang, C. Boxall, and G. H. Kelsall, Coll. Surfaces A: Physicochemical and Engineering Aspects 73, 145 (1993).

    Google Scholar 

  24. K. Kuma, S. Nakabayashi, Y. Suzuki, Isao Kudo, and K. Matsunaga, Marine Chem. 37, 15 (1992).

    Google Scholar 

  25. T. Furukawa, Y. Naitoh, H. Kohno, R. Tokunaga, and S. Taketani, Life Sciences 50, 2059 (1992).

    Google Scholar 

  26. J. Laskey, I. Webb, H.M. Schulman, and P. Ponka, Experimental Cell Research 176, 87 (1988).

    Google Scholar 

  27. N. Chenoufi, O. Loreal, B. Drenou, S. Cariou, N. Hubert, P. Leroyer, P. Brissot, and G. Lescoat, Journal of Hepatology 26, 650 (1997).

    Google Scholar 

  28. R.A. Zager, S.M. Fuerstenberg, P.H. Baehr, D. Myerson, and B. Torok-Storb, J. Am. Soc. Nephrol. 4, 1588 (1994).

    Google Scholar 

  29. R.Y. Chan, P. Ponka, and H.M. Schulman, Experimen. Cell Res. 202, 326 (1992).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanković, S., Gotić, M., Jurin, M. et al. Photokilling Squamous Carcinoma Cells SCCVII with Ultrafine Particles of Selected Metal Oxides. Journal of Sol-Gel Science and Technology 27, 225–233 (2003). https://doi.org/10.1023/A:1023715004575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023715004575

Navigation