Skip to main content
Log in

Path Integration on a Quantum Computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study path integration on a quantum computer that performs quantum summation. We assume that the measure of path integration is Gaussian, with the eigenvalues of its covariance operator of order j-k with k>1. For the Wiener measure occurring in many applications we have k=2. We want to compute an ε-approximation to path integrals whose integrands are at least Lipschitz. We prove:

• Path integration on a quantum computer is tractable.

• Path integration on a quantum computer can be solved roughly ε-1 times faster than on a classical computer using randomization, and exponentially faster than on a classical computer with a worst case assurance.

• The number of quantum queries needed to solve path integration is roughly the square root of the number of function values needed on a classical computer using randomization. More precisely, the number of quantum queries is at most 4.46 ε-1. Furthermore, a lower bound is obtained for the minimal number of quantum queries which shows that this bound cannot be significantly improved.

• The number of qubits is polynomial in ε-1. Furthermore, for the Wiener measure the degree is 2 for Lipschitz functions, and the degree is 1 for smoother integrands.

PACS: 03.67.Lx; 31.15Kb; 31.15.-p; 02.70.-c

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. S. Abrams and C. P. Williams, LANL http://arXiv.org/abs/quant-ph/9908083.

  2. G. Brassard, P. Høyer, M. Mosca and A. Tapp, http://arXiv.org/abs/quant-ph/0005055.

  3. F. Curbera, J. Complexity 16, 474 (2000).

    Google Scholar 

  4. L. Grover, Phys. Rev. Lett. 79, 325 (1996). See also http://arXiv.org/abs/quant-ph/9706033.

    Google Scholar 

  5. L. Grover, Proceedings 30th Annual ACM Symp. on the Theory of Computing (ACM Press, New York). See also http://arXiv.org/abs/quant-ph/9711043 and Phys. Rev. Lett. 80, 4329 (1998).

    Google Scholar 

  6. S. Heinrich, J. Complexity 18, 1 (2002). See also http://arXiv.org/abs/quant-ph/0105116.

    Google Scholar 

  7. S. Heinrich, J. Complexity 19, 1 (2003). See also http://arXiv.org/abs/quant-ph/0112153.

    Google Scholar 

  8. S. Heinrich and E. Novak, In: K.-T. Fang, F. J. Hickernell, and H. Niederreiter, (eds), Monte Carlo and Quasi-Monte Carlo Methods 2000 (Springer-Verlag, Berlin, 2002). See also http://arXiv.org/abs/quant-ph/0105114.

    Google Scholar 

  9. S. Heinrich and E. Novak, J. Complexity 19, 1 (2003). See also http://arXiv.org/abs/quantph/ 0109038.

    Google Scholar 

  10. M. Kwas and Y. Li, submitted for publication.

  11. M. Kwas and H. Wo?niakowski, J. Complexity (to appear).

  12. A. Nayak and F. Wu, STOC, May, 1999, 384-393. See also http://arXiv.org/abs/quant-ph/9804066.

  13. H. Niederreiter, CBMS-NSF Reg. Conf. Series Appl. Math., 63 (SIAM, Philadelphia, 1992).

    Google Scholar 

  14. E. Novak, Lecture Notes in Mathematics, 1349 (Springer Verlag, Berlin, 1988).

    Google Scholar 

  15. E. Novak, J. Complexity, 11, 57 (1995).

    Google Scholar 

  16. E. Novak, J. Complexity, 17, 2 (2001). See also http://arXiv.org/abs/quant-ph/0008124.

    Google Scholar 

  17. E. Novak, I. H. Sloan, and H. Wo?niakowski. http://arXiv.org/abs/quant-ph/0206023.

  18. L. Plaskota, G.W. Wasilkowski, and H. Wo?niakowski, J. Comp. Phys. 164, 355 (2000).

    Google Scholar 

  19. P. W. Shor, Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, California) See also http://arXiv.org/abs/ quant-ph/9508027.

  20. P. W. Shor, Documenta Mathematica (extra volume ICM) I, 467 (1998).

    Google Scholar 

  21. J. F. Traub, Physics Today, May, 39 (1999).

  22. J. F. Traub, G. W. Wasilkowski, and H. Wo?niakowski, Information-based Complexity (Academic Press, New York, 1988).

    Google Scholar 

  23. J. F. Traub and A. G. Werschulz, Information and Complexity (Cambridge University Press, Cambridge, UK, 1998).

    Google Scholar 

  24. N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions on Banach Spaces (Reidel, Dordrecht, 1987).

    Google Scholar 

  25. G. W. Wasilkowski and H. Wo?niakowski, J. Math. Physics 37(4), 2071 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Woźniakowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traub, J., Woźniakowski, H. Path Integration on a Quantum Computer. Quantum Information Processing 1, 365–388 (2002). https://doi.org/10.1023/A:1023417813916

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023417813916

Navigation