Skip to main content
Log in

Stretching and visualizing titin molecules: combining structure, dynamics and mechanics

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The details of the global and local structure and function of titin, a gaint filamentous intrasarcomeric protein are largely undiscovered. Here we dicuss a combination of bulk-solution and novel single-molecule techniques that may lend unique insights into titin's molecular dynamic, structural and mechanical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bang ML, Centner T, Forno. F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H and Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89(11): 1065-1072.

    PubMed  CAS  Google Scholar 

  • Baranova EG (1965) On the concentration quenching of the luminescence of rhodamine 6G solutions. Op Spectrosc 18: 230-234.

    Google Scholar 

  • Burghardt TP, Lyke JE and Ajtai K (1996) Fluorescence emission and anisotropy from rhodamine dimers. Biophys Chem 59: 119-131.

    Article  PubMed  CAS  Google Scholar 

  • Cantor C and Schimmel PR (1980) Biophysical Chemistry III. The Behavior of Biological Macromolecules. W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H and Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86(11): 1114-1121.

    PubMed  CAS  Google Scholar 

  • Grama L, Somogyi B and Kellermayer MSZ (2000) Global Configuration of Titin Revealed by Chain-Associated Rhodamine Dimer Formation. III. International Conference on Molecular Recognition, University of Pécs, Pécs, Hungary.

    Google Scholar 

  • Grama L, Somogyi B and Kellermayer MS (2001a) Global configuration of single titin molecules observed through chain-associated rhodamine dimers. Proc Natl Acad Sci USA 98(25): 14,362-14,367.

    Article  CAS  Google Scholar 

  • Grama L, Somogyi B and Kellermayer MSZ (2001b) Direct visualization of surface-adsorbed single fluorescently labeled titin molecules. Single Mol 2: 239-248.

    Article  Google Scholar 

  • Grama L, Somogyi B and Kellermayer MSZ (2001c) Global configuration and flexibility of fluorescently labeled titin molecules. Biophys J 80(1): 277a.

    Google Scholar 

  • Granzier H and Labeit S (2002) Cardiac titin: an adjustable multifunctional spring. J Physiol 541(Pt 2): 335-342.

    Article  PubMed  CAS  Google Scholar 

  • Granzier H, Helmes M, Cazorla O, McNabb M, Labeit D, Wu Y, Yamasaki R, Redkar A, Kellermayer M, Labeit S and Trombitas K (2000) Mechanical properties of titin isoforms. Adv Exp Med Biol 481: 283-300.

    PubMed  CAS  Google Scholar 

  • Granzier H, Helmes M and Trombitás K (1996) Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Biophys J 70(1): 430-442.

    PubMed  CAS  Google Scholar 

  • Granzier H, Kellermayer M, Helmes M and Trombitás K (1997) Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 73(4): 2043-2053.

    PubMed  CAS  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H and Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 11(1): 18-25.

    Article  PubMed  CAS  Google Scholar 

  • Ha T, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG and Weiss S (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci USA 96: 893-898.

    Article  PubMed  CAS  Google Scholar 

  • Hallett P, Tskhovrebova L, Trinick J, Offer G and Miles MJ (1996) Improvements in atomic force microscopy protocols for imaging fibrous proteins. J Vac Sci Technol B 14(2): 1444-1448.

    Article  CAS  Google Scholar 

  • Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA and Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring. Circ Res 84(11): 1339-1352.

    PubMed  CAS  Google Scholar 

  • Higuchi H, Nakauchi Y, Maruyama K and Fujime S (1993) Characterization of beta-connectin (titin 2) from striated muscle by dynamic light scattering. Biophys J 65(5): 1906-1915.

    PubMed  CAS  Google Scholar 

  • Horowits R, Kempner ES, Bisher ME and Podolsky RJ (1986) A physiological role for titin and nebulin in skeletal muscle. Nature 323(6084): 160-164.

    Article  PubMed  CAS  Google Scholar 

  • Improta S, Krueger JK, Gautel M, Atkinson RA, Lefevre JF, Moulton S, Trewhella J and Pastore A (1998) The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity. J Mol Biol 284(3): 761-777.

    Article  PubMed  CAS  Google Scholar 

  • Improta S, Politou AS and Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4(3): 323-337.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ (2000a) Mechanical Behavior of the Giant Protein Titin Explored by Imaging and Manipulating Single Molecules. III. International Conference on Molecular Recognition, University of Pécs, Pécs, Hungary.

    Google Scholar 

  • Kellermayer MSZ (2000b) The muscular break: molecular mechanisms of regulating sarcomeric extensibility by titin. Biophys J 78: 3A.

    Google Scholar 

  • Kellermayer MSZ and Granzier HL (1996) Calcium-dependent inhibition of in vitro thin-filament motility by native titin. FEBS Lett 380(3): 281-286.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Grama L and Somogyi B (2000a) Direct visualization of the extensibility of fluorescently labeled titin molecules. Biophys J 78: 392A.

    Google Scholar 

  • Kellermayer MSZ, Smith S, Bustamante C and Granzier HL (2000b) Mechanical manipulation of single titin molecules with laser tweezers. Adv Exp Med Biol 481: 111-126.

    PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Bustamante C and Granzier HL (1999) A molecular segment in titin is an adjustable spring. Biophys J 76: A9.

    Google Scholar 

  • Kellermayer MSZ, Smith SB, Bustamante C and Granzier HL (1998) Complete unfolding of the titin molecule under external force. J Struct Biol 122(1-2): 197-205.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith SB, Granzier HL and Bustamante C (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276(5315): 1112-1126.

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer MS, Smith SB, Bustamante C and Granzier HL (2001) Mechanical fatigue in repetitively stretched single molecules of titin. Biophys J 80(2): 852-863.

    PubMed  CAS  Google Scholar 

  • Kellermayer MSZ, Smith BL, Bustamante C and Granzier HL (2002a) Force-driven folding and unfolding transitions in single titin molecules: single polymer strand manipulation. NATO Science Series 3. High Technology 87: 311-326.

    CAS  Google Scholar 

  • Kellermayer MSZ, Trombitás K and Granzier HL (2002b) Formation and elasticity of multimolecular bundles of titin. Biophys J 82: 370.

    Google Scholar 

  • Kurzban GP and Wang K (1988) Giant polypeptides of skeletal muscle titin: sedimentation equilibrium in guanidine hydrochloride. Biochem Biophys Res Commun 150(3): 1155-1161.

    Article  PubMed  CAS  Google Scholar 

  • Labeit S and Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270(5234): 293-296.

    PubMed  CAS  Google Scholar 

  • Labeit S, Gautel M, Lakey A and Trinick J (1992) Towards a molecular understanding of titin. Embo J 11(5): 1711-1716.

    PubMed  CAS  Google Scholar 

  • Lang D and Coates P (1968) Diffusion coefficient of DNA in solution at 'zero' concentration as measured by electron microscopy. J Mol Biol 36: 137-151.

    Article  PubMed  CAS  Google Scholar 

  • Levshin LV and Bocharov VG (1961) Study of concentration effects in solutions of certain organic compounds. Op Spectrosc 10: 330-333.

    Google Scholar 

  • Linke WA, Ivemeyer M, Mundel P, Stockmeier MR and Kolmerer B (1998a) Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci USA 95(14): 8052-8057.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Ruegg JC and Labeit S (1996) Towards a molecular understanding of the elasticity of titin. J Mol Biol 261(1): 62-71.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Kulke M, Li H, Fujita-Becker S, Neagoe C, Manstein DJ, Gautel M and Fernandez JM (2002) PEVK Domain of Titin: an Entropic Spring with Actin-Binding Properties. J Struct Biol 137(1-2): 194-205.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S and Gregorio CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146(3): 631-644.

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Stockmeier MR, Ivemeyer M, Hosser H and Mundel P (1998b) Characterizing titin's I-band Ig domain region as an entropic spring. J Cell Sci 111(Pt 11): 1567-1574.

    PubMed  CAS  Google Scholar 

  • Ma K, Kan L and Wang K (2001) Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry 40(12): 3427-3438.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1997) Connectin/titin, giant elastic protein of muscle. Faseb J 11(5): 341-345.

    PubMed  CAS  Google Scholar 

  • Minajeva A, Kulke M, Fernandez JM and Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80(3): 1442-1451.

    PubMed  CAS  Google Scholar 

  • Nave R, Fürst DO and Weber K (1989) Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol 109(5): 2177-2187.

    Article  PubMed  CAS  Google Scholar 

  • Packard BZ, Toptygin DD, Komoriya A and Brand L (1996) Protofluorescent protease substrates: intramolecular dimers described by the exciton model. Proc Natl Acad Sci USA 93: 11,640-11,645.

    Article  CAS  Google Scholar 

  • Plant AL (1986) Mechanism of concentration quenching of a xanthene dye encapsulated in phospholipid vesicles. Photochem Photobiol 44(4): 453-459.

    PubMed  CAS  Google Scholar 

  • Politou AS, Gautel M, Improta S, Vangelista L and Pastore A (1996) The elastic I-band region of titin is assembled in a 'modular' fashion by weakly interacting Ig-like domains. J Mol Biol 255(4): 604-616.

    Article  PubMed  CAS  Google Scholar 

  • Politou AS, Gautel M, Joseph C and Pastore A (1994a) Immunoglobulin-type domains of titin are stabilized by amino-terminal extension. FEBS Lett 352(1): 27-31.

    Article  PubMed  CAS  Google Scholar 

  • Politou AS, Gautel M, Pfuhl M, Labeit S and Pastore A (1994b) Immunoglobulin-type domains of titin: same fold, different stability? Biochemistry 33(15): 4730-4737.

    Article  PubMed  CAS  Google Scholar 

  • Politou AS, Thomas DJ and Pastore A (1995) The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity. Biophys J 69(6): 2601-2610.

    PubMed  CAS  Google Scholar 

  • Rief M, Fernandez JM and Gaub HE (1998) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81(21): 4764-4767.

    Article  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt F, Fernandez JM and Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315): 1109-1112.

    Article  PubMed  CAS  Google Scholar 

  • Rivetti C, Guthold M and Bustamante C (1996) Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol 264: 919-932.

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi KK and Singhal GS (1966) Nature of bonding in dye aggregates. J Phys Chem 70(6): 1695-1701.

    CAS  Google Scholar 

  • Selwyn JE and Steinfeld JI (1972) Aggregation equilibria of xanthene dyes. J Phys Chem 76(5): 762-774.

    Article  CAS  Google Scholar 

  • Soteriou A, Clarke A, Martin S and Trinick J (1993) Titin folding energy and elasticity. Proc R Soc Lond B Biol Sci 254(1340): 83-86.

    CAS  Google Scholar 

  • Trinick J (1996) Cytoskeleton: Titin as a scaffold and spring. Curr Biol 6(3): 258-260.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J and Tskhovrebova L (1999) Titin: a molecular control freak. Trends Cell Biol 9(10): 377-380.

    Article  PubMed  CAS  Google Scholar 

  • Trinick J, Knight P and Whiting A (1984) Purification and properties of native titin. J Mol Biol 180(2): 331-356.

    Article  PubMed  CAS  Google Scholar 

  • Trombitás K, Freiburg A, Centner T, Labeit S and Granzier H (1999) Molecular dissection of N2B cardiac titin's extensibility. Biophys J 77(6): 3189-3196.

    Article  PubMed  Google Scholar 

  • Trombitás K, Greaser M, French G and Granzier H (1998a) PEVK extension of human soleus muscle titin revealed by immunolabeling with the anti-titin antibody 9D10. J Struct Biol 122(1-2): 188-196.

    Article  PubMed  Google Scholar 

  • Trombitás K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M and Granzier H (1998b) Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 140(4): 853-859.

    Article  PubMed  Google Scholar 

  • Trombitás K, Jin JP and Granzier H (1995) The mechanically active domain of titin in cardiac muscle. Circ Res 77(4): 856-861.

    PubMed  Google Scholar 

  • Tskhovrebova L and Trinick J (1997) Direct visualization of extensibility in isolated titin molecules. J Mol Biol 265(2): 100-106.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (1999) Coordinated light, electron and atomic force microscopy of titin molecules. Biophys J 76: A9.

    Google Scholar 

  • Tskhovrebova L and Trinick J (2000) Extensibility in the titin molecule and its relation to muscle elasticity. Adv Exp Med Biol 481: 163-173.

    PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2001) Flexibility and extensibility in the titin molecule: analysis of electron microscope data. J Mol Biol 310(4): 755-771.

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L and Trinick J (2002) Role of titin in vertebrate striated muscle. Philos Trans Roy Soc Lond B Biol Sci 357(1418): 199-206.

    Article  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, Sleep JA and Simmons RM (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387(6630): 308-312.

    Article  PubMed  CAS  Google Scholar 

  • Wang K (1996) Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv Biophys 33: 123-134.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Forbes JG and Jin AJ (2001) Single molecule measurements of titin elasticity. Prog Biophys Mol Biol 77(1): 1-44.

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Ramirez-Mitchell R and Palter D (1984). Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci USA 81(12): 3685-3689.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Ha T, Kim HD, Centner T, Labeit S and Chu S (2000) Fluorescence quenching: a tool for single-molecule protein-folding study. Proc Natl Acad Sci USA 97(26): 14,241-14,244.

    Article  CAS  Google Scholar 

  • Zhuang X, Ha T, Kim HD, Chu S and Labeit S (1999) Fluorescence and force study of folding/unfolding transitions in single titin molecules. Biophys J 76(1): A9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellermayer, M.S.Z., Grama, L. Stretching and visualizing titin molecules: combining structure, dynamics and mechanics. J Muscle Res Cell Motil 23, 499–511 (2002). https://doi.org/10.1023/A:1023414624092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023414624092

Keywords

Navigation