Skip to main content
Log in

Nutrient dynamics of drained peatland forests

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Forest drainage has been used rather widely to improve tree growth in peatlands in northern and northeastern Europe and some parts of North America. The consequent fundamental change in the vegetation presumably gives rise to a concomitant change in the distribution of nutrients within the ecosystem. We investigated the post-drainage dynamics of soil properties (top 30-cm) and tree stand biomass on a series of peatlands drained for forestry in Finland to evaluate the sufficiency of soil nutrient pools for production forestry, and the ability of a floristic-ecological peatland site type classification for estimating soil nutrient status. The nutrient dynamics were assessed by comparing the nutrient pools in a large number of peatland sites differing in drainage age. Drainage unambiguously influenced stand biomass and structure and, consequently, the nutrient pool bound in trees. Nevertheless, with the exception of Mg, ditching did not decrease soil nutrient pools over the 75-year observation period. Thus, the soil pools seem sufficient for forest production on these sites. The decreasing trend in the soil Mg pool points on a potential risk in the long run, however. Peat depth and temperature sum were identified as significant sources of variation for the soil nutrient pools. Using soil Ca, K, Fe and N pools, on average 49% of our sites were grouped correctly according to the floristic-ecological site type classification. This classification most successfully described soil nutrient status among the most nutrient-poor sites. We concluded that the floristic-ecological classification of drained peatlands successfully describes their production potential, but not their total nutrient pools in varying thermoclimatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Finér L. 1989. Biomass and nutrient cycle in fertilized and unfertilized pine, mixed birch and pine and spruce stands on a drained mire. Acta For. Fenn. 208: 1–63.

    Google Scholar 

  • Finér L. 1991. Effect of fertilization on dry mass accumulation and nutrient cycling in Scots pine on an ombrotrophic bog. Acta For. Fenn. 223: 1–42.

    Google Scholar 

  • Granhall U. and Selander H. 1973. Nitrogen fixation in a subarctic mire. Oikos 24: 8–15.

    Google Scholar 

  • Grigal D.F. and Brooks K.N. 1997. Forest management impacts on undrained peatlands in North America. In: Trettin C.C., Jurgensen M.F., Grigal D.F., Gale M.R. and Jeglum J.K. (eds), Northern Forested Wetlands: Ecology and Management. CRC Press, Boca Raton, Fla., USA, pp. 369–386.

    Google Scholar 

  • Gustavsen H.G., Heinonen R., Paavilainen E. and Reinikainen A. 1998. Growth and yield models for forest stands on drained peatland sites in southern Finland. Forest Ecol. Manage. 107: 1–17.

    Google Scholar 

  • Haavisto V.F. and Jeglum J.K. 1991. Peatlands potentially available for forestry in Canada. In: Jeglum J.K. and Overend R.P. (eds), Peat and Peatlands: Diversification and Innovation. Peatland Forestry. Vol. 1. The Canadian Society for Peat and Peatlands, Quebec City, Quebec, Canada, pp. 30–37.

    Google Scholar 

  • Heikurainen L. 1955. Rämemännikön juuriston rakenne ja kuivatuksen vaikutus siihen (Referat: Der Wurzelaufbau der Kiefernbestände auf Reisermoorböden und seine Beeinflussung durch die Entwässerung). Acta For Fenn 65: 1–85.

    Google Scholar 

  • Helmisaari H.-S. 1992. Nutrient retranslocation in three Pinus sylvestris stands. Forest Ecol. Manage. 51: 347–367.

    Google Scholar 

  • Hemond H.F. 1983. The nitrogen budget of Thoreau's bog. Ecology 64: 99–109.

    Google Scholar 

  • Hökkä H., Alenius V. and Penttilä T. 1997. Individual-tree basal area growth models for Scots pine, pubescent birch and Norway spruce on drained peatlands in Finland. Silva Fenn. 31: 161–178.

    Google Scholar 

  • Holmen H. 1964. Forest ecological studies on drained peat land in the province of Uppland, Sweden. Parts I-III. Studia Forestalia Suecica 16: 1–236.

    Google Scholar 

  • Jeglum J.K. and He F. 1995. Pattern and vegetation-environment relationships in a boreal forested wetland in northeastern Ontario. Can. J. Bot. 73: 629–637.

    Google Scholar 

  • Kaunisto S. 1997. Peatland forestry in Finland: problems and possibilities from the nutritional point of view. In: Trettin C.C., Jurgensen M.F., Grigal D.F., Gale M.R. and Jeglum J.K. (eds), Northern Forested Wetlands: Ecology and Management. CRC Press, Boca Raton, Fla., USA, pp. 387–401.

    Google Scholar 

  • Kaunisto S. and Paavilainen E. 1988. Nutrient stores in old drainage areas and growth of stands. Communicationes Instituti Forestalis Fenniae 145: 1–39.

    Google Scholar 

  • Keltikangas M., Laine J., Puttonen P. and Seppälä K. 1986. Vuosina 1930–1978 metsäojitetut suot: ojitusalueiden inventoinnin tuloksia (Summary: Peatlands drained for forestry during 1930-1978: results from field surveys of drained areas). Acta For. Fenn. 193: 1–94.

    Google Scholar 

  • Kuusela K. and Salminen S. 1991. Suomen metsävarat 1977–1984 ja niiden kehittyminen 1952-1980. Summary: Forest resources of Finland in 1977-1984 and their development in 1952-1980. Acta For. Fenn. 220: 1–84.

    Google Scholar 

  • Laiho R. and Finér L. 1996. Changes in root biomass after water-level drawdown on pine mires in southern Finland. Scand. J. For. Res. 11: 251–260.

    Google Scholar 

  • Laiho R. and Laine J. 1994. Nitrogen and phosphorus stores in peatlands drained for forestry in Finland. Scand. J. For. Res. 9: 251–260.

    Google Scholar 

  • Laiho R. and Laine J. 1995. Changes in mineral element concentrations in peat soils drained for forestry in Finland. Scand. J. For. Res. 10: 218–224.

    Google Scholar 

  • Laiho R., Sallantaus T. and Laine J. 1999. The effect of forestry drainage on vertical distributions of major plant nutrients in peat soils. Plant Soil 207: 169–181.

    Google Scholar 

  • Laine J. 1989. Metsäojitettujen soiden luokittelu (Summary: Classification of peatlands drained for forestry). Suo 40: 37–51.

    Google Scholar 

  • Laine J. and Vanha-Majamaa I. 1992. Vegetation ecology along a trophic gradient on drained pine mires in southern Finland. Ann. Bot. Fenn. 29: 213–233.

    Google Scholar 

  • Laine J., Vasander H. and Laiho R. 1995a. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J. Appl. Ecol. 32: 785–802.

    Google Scholar 

  • Laine J., Vasander H. and Sallantaus T. 1995b. Ecological effects of peatland drainage for forestry. Environ. Rev. 3: 286–303.

    Google Scholar 

  • Lieffers V.J. and Rothwell R.L. 1987. Rooting of peatland black spruce and tamarack in relation to depth of water table. Can. J. Bot. 65: 817–821.

    Google Scholar 

  • Liski J. and Westman C.J. 1995. Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry 29: 183–197.

    Google Scholar 

  • Marklund L.G. 1988. Biomassfunktioner för tall, gran och björk i Sverige (Summary: Biomass functions for pine, spruce and birch in Sweden). Report 45. Department of Forest Survey, Swedish University of Agricultural Sciences, Umeå.

    Google Scholar 

  • Mikola P. 1952. Soistumisen ja metsäojituksen mikrobiologiaa (Summary: On the microbiology of peat formation and artificial drainage). Suo 6: 39–43.

    Google Scholar 

  • Miller H.G., Cooper J.M., Miller J.D. and Pauline O.J.L. 1979. Nutrient cycles in pine and their adaptation to poor soils. Can. J. For. Res. 9: 19–26.

    Google Scholar 

  • Minkkinen K. 1999. Effect of forestry drainage on the carbon balance and radiative forcing of peatlands in Finland. PhD Dissertation, University of Helsinki.

  • Minkkinen K. and Laine J. 1998a. Effect of forest drainage on the peat bulk density of pine mires in Finland. Can. J. For. Res. 28: 178–186.

    Google Scholar 

  • Minkkinen K. and Laine J. 1998b. Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can. J. For. Res. 28: 1267–1275.

    Google Scholar 

  • Minkkinen K., Vasander H., Jauhiainen S., Karsisto M. and Laine J. 1999. Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil 207: 107–120.

    Google Scholar 

  • Minkkinen K., Laine J. and H?kkä H. 2001. Tree stand development and carbon sequestration in drained peatland stands in Finland - a simulation study. Silva Fenn. 35: 55–69.

    Google Scholar 

  • Ojansuu R. and Henttonen H. 1983. Kuukauden keskilämpötilan, lämpösumman ja sademäärän paikallisten arvojen johtaminen Ilmatieteen laitoksen mittaustiedoista (Summary: Estimation of the local values of monthly mean temperature, effective temperature sum and precipitation sum from the measurements made by the Finnish Meteorological Office). Silva Fenn. 17: 143–160.

    Google Scholar 

  • Paavilainen E. 1966. Maan vesitalouden järjestelyn vaikutuksesta rämemännikön juurisuhteisiin (Summary: On the effect of drainage on root systems of Scots pine on peat soils). Communicationes Instituti Forestalis Fenniae 61: 1–110.

    Google Scholar 

  • Paavilainen E. 1966. On relationships between the root systems of white birch and Norway spruce and ground water table. Communicationes Instituti Forestalis Fenniae 62: 1–15.

    Google Scholar 

  • Paavilainen E. and Päivänen J. 1995. Peatland Forestry: Ecology and Principles. Ecological Studies 111. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Puustjärvi V. 1952. The precipitation of iron in peat soils. Acta Agr. Fenn. 78: 1–72.

    Google Scholar 

  • Sallantaus T. 1992. Leaching in the material balance of peatlands-preliminary results. Suo 43: 253–258.

    Google Scholar 

  • Schauffler M., Jacobson G.L., Pugh A.L. and Norton S.A. 1996. Influence of vegetational structure on capture of salt and nutrient aerosols in a Maine peatland. Ecol. Appl. 6: 263–268.

    Google Scholar 

  • Silins U. and Rothwell R.L. 1999. Spatial patterns of aerobic limit depth and oxygen diffusion rate at two peatlands drained for forestry in Alberta. Can. J. For. Res. 29: 53–61.

    Google Scholar 

  • Solantie R. 1974. The influence of water balance in summer on forest and peatland vegetation and bird fauna and through the temperature on agricultural conditions in Finland. Silva Fenn. 8: 160–184.

    Google Scholar 

  • Starr M. and Westman C.J. 1978. Easily extractable nutrients in the surface peat layer of virgin sedgepine swamps. Silva Fenn. 12: 65–78.

    Google Scholar 

  • Stone E.L. and Kszystyniak R. 1977. Conservation of potassium in the Pinus resinosa ecosystem. Science 198: 192–194.

    Google Scholar 

  • Sundström E., Magnusson T. and Hånell B. 2000. Nutrient conditions in drained peatlands along a north-south climatic gradient in Sweden. Forest Ecol. Manage. 126: 149–161.

    Google Scholar 

  • Urban N.R. and Eisenreich S.J. 1988. Nitrogen cycling in a forested Minnesota bog. Can. J. Bot. 66: 435–449.

    Google Scholar 

  • Valmari J. 1921. Beiträge zur Chemischen Bodenanalyse. Acta For. Fenn. 20: 1–67.

    Google Scholar 

  • Vasander H. 1982. Plant biomass and production in virgin, drained and fertilized sites in a raised bog in southern Finland. Ann. Bot. Fenn. 19: 103–125.

    Google Scholar 

  • Verry E.S. and Urban N.R. 1992. Nutrient cycling at Marcell Bog, Minnesota. Suo 43: 147–153.

    Google Scholar 

  • Vitt D.H., Horton D.G., Slack N.G. and Malmer N. 1990. Sphagnum-dominated peatlands of the hyperoceanic British Columbia coast: patterns in surface water chemistry and vegetation. Can. J. For. Res. 20: 696–711.

    Google Scholar 

  • Waughman G.J. and Bellamy D.J. 1980. Nitrogen fixation and the nitrogen balance in peatland ecosystems. Ecology 61: 1185–1198.

    Google Scholar 

  • Westman C.J. 1981. Fertility of surface peat in relation to the site type and potential stand growth. Acta For. Fenn. 172: 1–77.

    Google Scholar 

  • Wheeler B.D. and Proctor M.C.F. 2000. Ecological gradients, subdivisions and terminology of northwest European mires. J. Ecol. 88: 187–203.

    Google Scholar 

  • Zogg G.P. and Barnes B. 1995. Ecological classification and analysis of wetland ecosystems, northern Lower Michigan, USA. Can. J. For. Res. 25: 1865–1875.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westman, C.J., Laiho, R. Nutrient dynamics of drained peatland forests. Biogeochemistry 63, 269–298 (2003). https://doi.org/10.1023/A:1023348806857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023348806857

Navigation