Skip to main content
Log in

An Early Prediction of Maximum Sunspot Number in Solar Cycle 24

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoine, J. P.: 1999, in J. C. Van der Berg (ed.), Wavelet in Physics, Cambridge University Press, Cambridge, p. 453.

    Google Scholar 

  • Babcock, H. W. J.: 1961, Astrophys. J. 133, 572.

    Google Scholar 

  • Beer, J., Tovias, S., and Weiss, N.: 1998, Solar Phys. 181, 237.

    Google Scholar 

  • De Mayer, F.: 1998, Solar Phys. 181, 201.

    Google Scholar 

  • Duhau, S. and Chen C. Y.: 2000, Anales Asociación Física Argentina 11, 321.

    Google Scholar 

  • Duhau, S. and Chen, C. Y.: 2002, Geophys. Res. Lett. 29, 6-1.

    Google Scholar 

  • Duhau, S., Martinez E. A., and Hurtado de Mendoza, D.: 1997, Actas 19a Reunion Cientifica de Geofisica y Geodesia, 86.

  • Durney, B.: 2000, Solar Phys. 196, 421.

    Google Scholar 

  • Eddy, J. A.: 1976, Science 192, 1189.

    Google Scholar 

  • Feynman, J. and Gabriel, S.: 1990, Solar Phys. 127, 393.

    Google Scholar 

  • Hoyt, D. and Schatten, K. H.: 1997, The Role of the Sun in Climate Change, Oxford University Press, Oxford, p. 279.

    Google Scholar 

  • Gleissberg W.: 1966, J. British Astron. Soc. 76, 265.

    Google Scholar 

  • Gnevyshev, M. N. and Ohl, A. I.: 1948, Astron. Zh. 25, 18.

    Google Scholar 

  • Gregg, D. P.: 1984, Solar Phys. 90, 185.

    Google Scholar 

  • Knobloch, E, Tobias, S. M. and Weiss, N. O.: 1998, Monthly Notices Royal Astron. Soc. 297, 1123.

    Google Scholar 

  • Komitov, B. and Bonev, B.: 2001, Atrophys. J. 554, L119.

    Google Scholar 

  • Layden, A. C., Fox, P. A., Howard, J. M., Sarajedini, A., Schatten, K. H., and Sofia, S.: 1991, Solar Phys. 132, 1.

    Google Scholar 

  • Legrand, J. P. and Simon, P. A.: 1991, Solar Phys. 131, 187.

    Google Scholar 

  • Lockwood, M., Stamper, R., and Wild, M. N.: 1999, Nature 399, 437.

    Google Scholar 

  • Lorenz, E.: 1993, The Essence of Chaos, University Washington Press, Washington.

    Google Scholar 

  • Nevanlinna, H. and Kataja, E.: 1993, Geophys. Res. Lett. 20, 2703.

    Google Scholar 

  • Oliver, R., Ballester, J. L., and Baudin, F.: 1998, Nature 394, 552.

    Google Scholar 

  • Rioul, O. and Vetterli, M.: 1991, IEEE Signal Processing Magazine, 14.

  • Russell, C. T.: 1975, Solar Phys. 42, 259.

    Google Scholar 

  • Salakhutdinova, J. I.: 1999, Solar Phys. 188, 377.

    Google Scholar 

  • Schatten, K. H., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1978, Geophys. Res. Lett. 5, 411.

    Google Scholar 

  • Schove, D. J.: 1955, J. Geophys. Res. 60, 127.

    Google Scholar 

  • Stuiver, M. and Braziunas, T. F.: 1988, in F. R. Stephenson and A. Wolfendale (eds.) Secular Solar and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic Publishers, Dordrecht Holland, p. 245.

    Google Scholar 

  • Torrence, C. and Compo, G. P.: 1998, Bull. Am. Met. Soc. 79, 61.

    Google Scholar 

  • Vennerstroem, S.: 2000, Geophys. Res. Lett. 27, 69.

    Google Scholar 

  • Weiss, N. O.: 1988, in F. R. Stephenson and A. Wolfendale (eds.) Secular Solar and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic Publishers, Dordrecht, Holland, p. 69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duhau, S. An Early Prediction of Maximum Sunspot Number in Solar Cycle 24. Solar Physics 213, 203–212 (2003). https://doi.org/10.1023/A:1023260916825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023260916825

Keywords

Navigation