Skip to main content
Log in

The potential of fish production based on periphyton

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Periphyton is composed of attached plant andanimal organisms embedded in amucopolysaccharide matrix. This reviewsummarizes research on periphyton-based fishproduction and on periphyton productivity andingestion by fish, and explores the potentialof developing periphyton-based aquaculture.Important systems with periphyton arebrush-parks in lagoon areas and freshwaterponds with maximum extrapolated fish productionof 8 t ha−1 y−1 and 7 t ha−1y−1, respectively. Experiments with avariety of substrates and fish species havebeen done, sometimes with supplemental feeding.In most experiments, fish production wasgreater with additional substrates compared tocontrols without substrates. Colonization ofsubstrates starts with the deposition oforganic substances and attraction of bacteria,followed by algae and invertebrates. Afterinitial colonization, biomass density increasesto a maximum when competition for light andnutrients prevents a further increase. Often,more than 50% of the periphyton ash-free drymatter is of non-algal origin. Highest biomass(dm) in natural systems ranges from 0 to 700g m−2 and in aquaculture experiments wasaround 100 g m−2. Highest productivity wasfound on bamboo in brush-parks (7.9 gC m−2 d−1) and on coral reefs (3 gC m−2 d−1). Inorganic and organicnutrients stimulate periphyton production.Grazing is the main factor determiningperiphyton density, while substrate type alsoaffects productivity and biomass. Better growthwas observed on natural (tree branches andbamboo) than on artifical materials (plasticand PVC). Many herbivorous and omnivorous fishcan utilize periphyton. Estimates of periphytoningestion by fish range from 0.24 to 112 mg dm(g fish)−1 d−1. Ingestion rates areinfluenced by temperature, fish size, fishspecies and the nutritional quality of theperiphyton. Periphyton composition is generallysimilar to that of natural feeds in fishponds,with a higher ash content due to the entrapmentof sand particles and formation of carbonates.Protein/Metabolizable Energy (P/ME) ratios ofperiphyton vary from 10 to 40 kJ g−1.Overall assimilation efficiency of fish growingon periphyton was 20–50%. The limited work onfeed conversion ratios resulted in valuesbetween 2 and 3. A simple simulation model ofperiphyton-based fish production estimates fishproduction at approximately 2.8 t ha−1y−1. Together with other food resources infishponds, total fish production with thecurrent technology level is estimated at about5 t ha−1 y−1. Because grazingpressure is determined by fish stocking rates,productivity of periphyton is currently themain factor limiting fish production. Weconclude that periphyton can increase theproductivity and efficiency of aquaculturesystems, but more research is needed foroptimization. Areas for attention include theimplementation and control of periphytonproduction (nutrient levels, substate types andconformations), the ratio of fish to periphytonbiomass, options for utilizing periphyton inintensive aquaculture systems and with marinefish, and possibilities for periphyton-basedshrimp culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, K.K. and Hambrey, J.B. (1999) Brush shelter: a recently introduced fishing method in the Kaptai Reservoir fisheries in Bangladesh. Naga 22, 20-23.

    Google Scholar 

  • Aizaki, M. and Sakamoto, K. (1988) Relationship between water quality and periphyton biomass in several streams in Japan. Proc. Int. Ass. Theor. Appl. Limnol. 23, 1511-1517.

    Google Scholar 

  • APHA (1998) Standard Methods for the Examination of Water and Wastewater, 20th edn. American public health Association, Washington DC.

    Google Scholar 

  • Apilánez, I., Gutiérrez, A. and Díaz, M. (1998) Effect of surface materials on initial biofilm development. Bioresource Technology 66, 225-230.

    Google Scholar 

  • Appler, H.N. (1985) Evaluation of Hydrodictyon reticulatum as protein source in feeds for Oreochromis (Tilapia) niloticus and Tilapia zillii. J. Fish Biol. 27, 327-334.

    Google Scholar 

  • Appler, H.N. and Jauncey, K. (1983) The utilization of a filamentous green alga (Cladophora glomerata L.) as a protein source in pelleted feeds for Sarotherodon (Tilapia) niloticus fingerlings. Aquaculture 30, 21-30.

    Google Scholar 

  • Arfi, R., Bouvy, M. and Luquet, P. (1997) Effects of a seasonal salinity change on periphyton biomass in a shallow tropical lagoon. Int. Revue Ges. Hydrobiol. 82, 81-93.

    Google Scholar 

  • Avnimelech, Y. and Lacher, M. (1979) A tentative nutrient balance for intensive fishponds. Bamidgeh 31, 3-8.

    Google Scholar 

  • Azim, M.E., Verdegem, M.C.J., Rahman, M.M., Wahab, M.A., van Dam, A.A. and Beveridge, M.C.M. (2002a) Evaluation of polyculture with Indian major carps in periphyton-based pond. Aquaculture 213, 131-149.

    Google Scholar 

  • Azim, M.E., Wahab, M.A., van Dam, A.A., Beveridge, M.C.M. and Verdegem, M.C.J. (2001a) The potential of periphyton-based culture of two Indian major carps, rohu Labeo rohita (Hamilton) and gonia Labeo gonius (Linnaeus). Aquacult. Res. 32, 209-216.

    Google Scholar 

  • Azim, M.E., Wahab, M.A., van Dam, A.A., Beveridge, M.C.M., Huisman, E.A. and Verdegem, M.C.J. (2001b) Optimization of stocking ratios of two Indian major carps, rohu (Labeo rohita Ham.) and catla (Catla catla Ham.) in a periphyton-based aquaculture system. Aquaculture 203, 33-49.

    Google Scholar 

  • Azim, M.E., Wahab, M.A., van Dam, A.A., Beveridge, M.C.M., Milstein, A., and Verdegem, M.C.J. (2001c) Optimization of fertilization rate for maximizing periphyton production on artificial substrates and the implications for periphyton-based aquaculture. Aquacult. Res. 32, 749-760.

    Google Scholar 

  • Azim, M.E., Wahab, M.A., Verdegem, M.C.J., van Dam, A.A., van Rooij, J.M. and Beveridge, M.C.M. (2002b) The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquat. Living Resour. 15, 231-241.

    Google Scholar 

  • Azim, M.E., Verdegem, M.C.J., Khatoon, H., Wahab, M.A., van Dam, A.A. and Beveridge, M.C.M. (2002c) A comparison of fertilization, feeding and three periphyton substrates for increasing fish production in freshwater pond aquaculture in Bangladesh. Aquaculture 212, 227-243.

    Google Scholar 

  • Azim, M.E., Verdegem, M.C.J., Mantingh, I., van Dam, A.A. and Beveridge, M.C.M. (2003). Ingestion and utilization of periphyton grown on artificial substrates by Nile tilapia Oreochromis niloticus L. Aquacult. Res. (in press).

  • Baffico, G.D. and Pedrozo, F.L. (1996) Growth factors controlling periphyton production in a temperate reservoir in Patagonia used for fish farming. Lakes Reserv.: Res. Manage. 2, 243-249.

    Google Scholar 

  • Barnese, L.E. and Schelske, C.L. (1994) Effects of nitrogen, phosphorous and carbon enrichment on planktonic and periphytic algae in a softwater, oligotrohic lake in Florida, USA. Hydrobiologia 277, 159-170.

    Google Scholar 

  • Battin, T.J., Butturini, A. and Sabater, F. (1999) Immobilization and metabolism of dissolved organic carbon by natural sediment biofilms in a Mediterranean and temperate stream. Aquat. Microb. Ecol. 19, 297-305.

    Google Scholar 

  • Bender, J.A., Vatcharapijarn, Y. and Russell, A. (1989) Fish feeds from grass clippings. Aquacult. Eng. 8, 407-419.

    Google Scholar 

  • Benitez, L.V. (1984) Milkfish nutrition. In: Juario, J.V., Ferraris, R.P. and Benitez, L.V. (eds.), Advances in Milkfish Biology and Culture. Proceedings of the second International Milk-fish Aquaculture Conference, 4-8 October 1983, Iloilo City, Philippines. SEAFDEC/IDRC, Manila, pp. 133-143.

  • Beveridge, M.C.M. and Baird, D.J. (2000) Diet, feeding and digestive physiology. In: Beveridge, M.C.M. and McAndrew, B.J. (eds.), Tilapias: Biology and Exploitation. Kluwer Academic Publishers, Dordrecht, pp. 59-87.

    Google Scholar 

  • Biggs, B.J.F., Kilroy, C. and Lowe, R.L. (1998a) Periphyton development in three valley segments of a New Zealand grassland river: Test of a habitat matrix conceptual model within a catchment. Arch. Hydrobiol. 143, 147-177.

    Google Scholar 

  • Biggs, B.J.F., Stevenson, R.J. and Lowe, R.L. (1998b) A habitat matrix conceptual model for stream periphyton. Arch. Hydrobiol. 143, 21-56.

    Google Scholar 

  • Blumenshine, S.C., Vadeboncoeur, Y., Lodge, D.M., Cottingham, K.L. and Knight, S.E. (1997) Benthic-pelagic links: response of benthos to water-column nutrient enrichment. J. N. Am. Benthol. Soc. 16, 466-479.

    Google Scholar 

  • Bott, T.L., Brock, J.T., Baattrup-Pedersen, A., Chambers, P.A., Dodds, W.K., Himbeault, K.T., Lawrence, J.R., Planas, D., Snyder, E. and Wolfaardt, G.M. (1997) An evaluation of techniques for measuring periphyton metabolism in chambers. Can. J. Fish. Aquat. Sci. 54, 715-725.

    Google Scholar 

  • Bowen, S.H. (1979) Determinants of the chemical composition of periphytic detrital aggregate in a tropical lake (Lake Valencia, Venezuela). Arch. Hydrobiol. 87, 166-177.

    Google Scholar 

  • Bowen, S.H., Lutz, E.V. and Ahlgren, M.O. (1995) Dietary protein and energy as determinants of food quality: trophic strategies compared. Ecology 76, 899-907.

    Google Scholar 

  • Boyd, C. (1985) Chemical budgets for channel catfish ponds. Trans. Am. Fish. Soc. 114, 291-298.

    Google Scholar 

  • Bratvold, D. and Browdy, C.L. (2001) Effect of sand sediment and vertical surfaces (AquaMats+) on production, water quality and microbial ecology in an intensive Litopenaeus vannamei culture system. Aquaculture 195, 81-94.

    Google Scholar 

  • Bruggemann, J.H. (1995) Parrotfish Grazing on Coral Reefs: A Trophic Novelty. PhD thesis, University of Groningen, the Netherlands, 213 pp.

    Google Scholar 

  • Butturini, A., Battin, J.T. and Sabater, F. (2000) Nitrification in stream sediment biofilms: the role of ammonium concentration and DOC quality. Water Research 34, 629-639.

    Google Scholar 

  • Cairns Jr., J., Kuhn, D.L. and Plafkin, J.L. (1979) Protozoan colonization of artificial substrates. In: Weitzel, R.L. (ed.), Methods and Measurements of Periphyton Communities: A Review. American Society for Testing and Materials, STP 690, pp. 34-57.

  • Carpenter, R.C. (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56, 345-363.

    Google Scholar 

  • Cattaneo, A. (1987) Periphyton in lakes of different trophy. Can. J. Fish. Aquat. Sci. 44, 296-303.

    Google Scholar 

  • Chapman, G. (1991) The Diet and Feeding Habits of Oreochromis niloticus (Linnaeus) and Cyprinus carpio (Linnaeus) in Lowland Rice Fields in Northeast Thailand. M.Sc. thesis, University of Waterloo, 131 pp.

  • Chapman, G. and Fernando, C.H. (1994) The diets and related aspects of feeding of Nile tilapia (Oreochromis niloticus L.) and common carp (Cyprinus carpio L.) in lowland rice fields in northeast Thailand. Aquaculture 123, 281-307.

    Google Scholar 

  • Cohen, D., Ra'anan, Z., Rappaport, U. and Arieli, Y. (1983) The production of freshwater prawn Macrobrachium rosenbergii in Israel: improved conditions for intensive monoculture. Bamidgeh 35, 31-37.

    Google Scholar 

  • Cohen, Y. (2001) Biofiltration-the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Bioresour. Technol. 77, 257-274.

    Google Scholar 

  • Costa, H.H. and Wijeyaratne, M.J.S. (1994) Utilization of mangrove species in brush-park construction and their effects on Negombo Estuary fishery (Sri Lanka). J. Appl. Ichthyol. 10, 96-103.

    Google Scholar 

  • Cowling, M.J., Hodgkiess, T., Parr, A.C.S., Smith, M.J. and Marrs, S.J. (2000) An alternative approach to antifouling based on analogues of natural processes. The Science of the Total Environment 258, 129-137.

    Google Scholar 

  • Cronin, G. and Hay, M.E. (1996) Susceptibility to herbivores depends on recent history of both the plant and the animal. Ecology 77, 1531-1543.

    Google Scholar 

  • Danilov, R.A. and Ekelund, N.G.A. (2001) Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status. J. Microbiol. Methods 45, 167-170.

    Google Scholar 

  • Delincé G., (1992) The Ecology of the Fish Pond Ecosystem with Special Reference to Africa. Kluwer Academic Publishers, Dordrecht, the Netherlands, 230 pp.

    Google Scholar 

  • Dempster, P.W., Baird, D.J. and Beveridge, M.C.M. (1995) Can fish survive by filter feeding on microparticles? Energy balance in tilapia grazing on algal suspensions. J. Fish Biol. 47, 7-17.

    Google Scholar 

  • Dempster, P.W., Beveridge, M.C.M. and Baird, D.J. (1993) Herbivory in the tilapia Oreochromis niloticus: a comparison of feeding rates on phytoplankton and periphyton. J. Fish Biol. 43, 385-392.

    Google Scholar 

  • DeNicola, D.M. and McIntire, C.D. (1999) Effects of substrate relief on the distribution of periphyton in laboratory streams. II. Interactions with irradiance. J. Phycol. 26, 634-641.

    Google Scholar 

  • Drenner, R.W., Day, D.J., Basham, S.J., Smith, J.D. and Jensen, S.I. (1997) Ecological water treatment system for removal of phosphorous and nitrogen from polluted water. Ecol. Appl. 7, 381-390.

    Google Scholar 

  • Durand, J.R. and Hem, S. (1996) The integration of extensive aquaculture (acadja-enclos) into the lagoon village environment in Côte d'Ivoire. ICLARM Conf. Proc. 41, 33-41.

    Google Scholar 

  • Edwards, P. (1993) Environmental issues in integrated agricultureaquaculture and wastewater fed fish culture systems. In: Pullin, R.S.V., Rosenthal, H. and Maclean, J.L. (eds.), Environment and Aquaculture in Developing Countries. ICLARM Conf. Proc., Vol. 31, pp. 139-170.

  • Ekpo, I. and Bender, J. (1989) Digestibility of a commercial fish feed, wet algae and dried algae by Tilapia nilotica and silver carp. Progr. Fish Cult. 51, 83-86.

    Google Scholar 

  • Eskinazi-Leça, E., Da Costa Alves, M.L. and De Paiva Rocha, I. (1980) O perifiton e sua relação com o cultivo de peixes mugilideos. 1st Symposium Brésilien d'Aquaculture, Recife, July 1978, pp. 109-119.

  • FAO (2001) World review of fisheries and aquaculture. In: The state of world fisheries and aquaculture 1998. Available: http://www.fao.org/docrep/w9900e/w9900e00.htm [2001, April 23].

  • Fisher-Wold, A.K. and Hershey, A.E. (1999) Effects of salmon carcass decomposition on biofilm growth and wood decomposition. Can. J. Fish. Aquat. Sci. 56, 767-773.

    Google Scholar 

  • Froese, R. and Pauly, D. (eds.) (2001) FishBase. World Wide Web electronic publication, http://www.fishbase.org [2001, October 9].

  • Gaines, S.D. (1985) Herbivory and between-habitat diversity: the differential effectiveness of defenses in a marine plant. Ecology 66, 473-485.

    Google Scholar 

  • Getachew, T. (1988) Digestive efficiency and nutrient composition gradient in the gut of Oreochromis niloticus L. in Lake Awasa, Ethiopia. J. Fish Biol. 33, 501-509.

    Google Scholar 

  • Ghosh, M. and Gaur, J.P. (1994) Algal periphyton of an unshaded stream in relation to in-situ nutrient enrichment and current velocity. Aquat. Bot. 47, 185-189.

    Google Scholar 

  • Gross, A., Boyd, C.E. and Wood, C.W. (1999) Ammonia volatilization from freshwater fish ponds. J. Environm. Qual. 28, 793-797.

    Google Scholar 

  • Guiral, D., Arfi, R., Da, K.P. and Konan-Brou, A.A. (1993) Communautés, biomasses et productions algales au sein d'un recif artificiel (acadja) en milieu lagunaire tropical. Rev. Hydrobiol. Trop. 26, 219-228.

    Google Scholar 

  • Gupta, M.V., Sollows, J.D., Mazid, M.A., Rahman, A., Hussain, M.G. and Dey, M.M. (1998) Integrating aquaculture with rice farming in Bangladesh: feasibility and economic visibility, its adoption and impact. ICLARM Tech. Rep. 55, 90 pp.

    Google Scholar 

  • Hansson, L.A. (1989) The influence of a periphytic biolayer on phosphorous exchange between substrate and water. Archiv. Hydrobiol. 115, 21-26.

    Google Scholar 

  • Hansson, L.A. (1990) Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwat. Biol. 24, 265-273.

    Google Scholar 

  • Hansson, L.A. (1992) Factors regulating periphytic algal biomass. Limnol. Oceanogr. 37, 322-328.

    Google Scholar 

  • Hansson, L.A., Johansson, L. and Persson, L. (1987) Effects of fish grazing on nutrient release and succession of primary producers. Limnol. Oceanogr. 32, 723-729.

    Google Scholar 

  • Hargreaves, J.A. (1998) Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166, 181-212.

    Google Scholar 

  • Hatcher, B.G. (1983) Grazing in coral reef ecosystems. In: Barnes, D.J. (ed.), Perspectives on Coral Reefs. Brian Clouston Publishers, Manaka, Australia, pp. 164-179.

    Google Scholar 

  • Hatcher, B.G. and Larkum, A.W.D. (1983) An experimental analysis of factors controlling the standing crop of the epilithic algal community on a coral reef. J. Exp. Mar. Biol. Ecol. 69, 61-84.

    Google Scholar 

  • Havens, K.E., East, T.L., Meeker, R.H., Davis, W.P. and Steinman, A.D. (1996) Pytoplankton and periphyton responses to in situ experimental nutrient enrichment in a shallow subtropical lake. J. Plankton Res. 18, 551-566.

    Google Scholar 

  • Hay, M.E. (1981) Spatial patterns of grazing intensity on a Caribbean barrier reef: herbivory and algal distribution. Aquat. Bot. 11, 97-109.

    Google Scholar 

  • Hem, S. and Avit, J.L.B. (1994) First results on “acadja-enclos” as an extensive aquaculture system (West Africa). Bull. Mar. Sci. 55, 1038-1049.

    Google Scholar 

  • Hepher, B. (1988) Nutrition of Pond Fishes. Cambridge University Press, Cambridge, 388 pp.

    Google Scholar 

  • Hill, W.R., Boston, H.L. and Steinman, A.D. (1992) Grazers and nutrients simultaneously limit lotic primary productivity. Can. J. Fish. Aquat. Sci. 49, 504-512.

    Google Scholar 

  • Hixon, M.A. and Brostoff, W.N. (1981) Fish Grazing and Community Structure of Hawaiian Reef Algae. Proceedings of the 4th International Coral Reef Symposium, 1981, Manila, Vol. 2, pp. 507-514.

  • Hoagland, K.D., Roemer, S.C. and Rosowski, J.R. (1982) Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69, 188-213.

    Google Scholar 

  • Horn, M.H. (1989) Biology of marine herbivorous fishes. Oceanogr. Mar. Biol. Annu. Rev. 27, 167-272.

    Google Scholar 

  • Horne, A.J. and Goldman, C.R. (1994) Limnology, 2nd edn. McGraw-Hill Book Company, USA.

    Google Scholar 

  • Huchette, S.M.H., Beveridge, M.C.M., Baird, D.J. and Ireland, M. (2000) The impacts of grazing by tilapias (Oreochromis niloticus L.) on periphyton communities growing on artificial substrate in cages. Aquaculture 186, 45-60.

    Google Scholar 

  • Huet, M. (1986) Textbook of Fish Culture, 2nd edn. Fishing News Books Ltd., Farnham, Surrey, 438 pp.

    Google Scholar 

  • Hutchinson, G.H. (1975) A Treatise on Limnology, Vol. III. Limnological Botany. John Wiley and Sons, New York.

    Google Scholar 

  • Izaguire, I. and Pizarro, H. (1998) Epilithic algae in a glacial stream at Hope Bay (Antarctica) Polar Biol. 19, 24-31.

    Google Scholar 

  • Jacoby, J.M. (1987) Alterations in periphyton characteristics due to grazing in a Cascade foothill stream. Freshwat. Biol. 18, 495-508.

    Google Scholar 

  • Jiménez-Montealegre, R. (2001) Nitrogen Transformation and Fluxes in Fish Ponds: A Modelling Approach. PhD-thesis, Wageningen University, the Netherlands, 185 pp.

  • Johnson, R.E., Tuchman, N.C. and Peterson, C.G. (1997) Changes in the vertical microdistribution of diatoms within a developing periphyton mat. J. N. Am. Benthol. Soc. 16, 503-519.

    Google Scholar 

  • Joseph, B., Otta, S.K., Karunasagar, I. and Karunasagar, I. (2001) Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int. J. Food Microbiol. 64, 367-437.

    Google Scholar 

  • Kapetsky, J. (1981) Brush park fisheries. In: Some Considerations for the Management of Coastal Lagoon and Estuarine Fisheries. FAO Fisheries Technical Paper 218. Food and Agriculture Organization, Rome, pp. 18-28.

    Google Scholar 

  • Keshavanath, P., Gangadhar, B., Ramesh, T.J., Beveridge, M.C.M., van Dam, A.A. and Verdegem, M.C.J. (2001a) On-farm evaluation of Indian major carp production with sugarcane bagasse as substrate for periphyton. Asian Fisheries Science 14, 367-376.

    Google Scholar 

  • Keshavanath, P., Gangadhar, B., Ramesh, T.J., van Dam, A.A., Beveridge, M.C.M. and Verdegem, M.C.J. (2002) The effect of periphyton and supplemental feeding on the production of the indigenous carps Tor khudree and Labeo fimbriatus. Aquaculture 213, 207-218.

    Google Scholar 

  • Keshavanath, P., Gangadhar, B., Ramesh, T.J., van Rooij, J.M., Beveridge, M.C.M., Baird, D.J., Verdegem, M.C.J. and Van Dam, A.A. (2001b) Use of artificial substrates to enhance production of freshwater herbivorous fish in pond culture. Aquacult. Res. 32, 189-197.

    Google Scholar 

  • Klumpp, D.W. and McKinnon, A.D. (1992) Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: dynamics at different spatial scales. Mar. Ecol. Progr. Ser. 86, 77-89.

    Google Scholar 

  • Klumpp, D.W. and Polunin, N.V.C. (1989) Partitioning among grazers of food resources within damselfish territories on a coral reef. J. Exp. Mar. Biol. Ecol. 125, 145-169.

    Google Scholar 

  • Konan-Brou, A.A. and Guiral, D. (1994) Available algal biomass in tropical brackish water artificial habitats. Aquaculture 119, 175-190.

    Google Scholar 

  • Kuehl, M., Glud, R.N., Ploug, H. and Ramsing, N.B. (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32, 799-812.

    Google Scholar 

  • Lam, P.K. and Lei, A. (1999) Colonization of periphytic algae on artificial substrates in a tropical stream. Diatom Res. 14, 307-322.

    Google Scholar 

  • Langis, R., Proulx, D., de la Noue, J. and Couture, P. (1988) Effects of bacterial biofilms on intensive Daphnia culture. Aquacult. Eng. 7, 21-38.

    Google Scholar 

  • Lobel, P.S. (1981) Trophic biology of herbivorous reef fishes: alimentary pH and digestive capabilities. J. Fish Biol. 19, 365-397.

    Google Scholar 

  • Loeb, S.L., Reuter, J.E. and Goldman, C.R. (1983) Littoral zone production of oligotrophic lakes-the contributions of phytoplankton and periphyton. In: Wetzel, R.G. (ed.), Periphyton of Rreshwater Ecosystems. Developments in Hydrobiology, Vol. 17. Dr W. Junk Publishers, The Hague, pp. 161-167.

    Google Scholar 

  • Lohman, K., Jones, J.R. and Perkins, B.D. (1992) Effects of nutrient enrichment and flood frequency on periphyton biomass in northern Ozark streams. Can. J. Fish. Aquat. Sci. 49, 1198-1205.

    Google Scholar 

  • Longhurst, A.R. and Pauly, D. (1987) Ecology of Tropical Oceans. Academic Press, San Diego, 407 pp.

    Google Scholar 

  • Madenjian, C.P., Rogers, G.L. and Fast, A.W. (1987) Predicting nighttime dissolved oxygen loss in prawn ponds of Hawaii: part II. A new method. Aquacultural Engineering 6, 209-225.

    Google Scholar 

  • Marsh, J.A. (1976) Energetic role of algae in reef ecosystems. Micronesia 12, 13-21.

    Google Scholar 

  • Mattila, J. and Raesiaenen, R. (1998) Periphyton growth as an indicator of eutrophication; an experimental approach. Hydrobiologia 377, 15-23.

    Google Scholar 

  • Matty, A.J. and Smith, P. (1978) Evaluation of a yeast, a bacterium and an alga as a protein source for rainbow trout. I. Effect of protein level on growth, gross conversion efficiency and protein conversion efficiency. Aquaculture 14, 235-246.

    Google Scholar 

  • McCollum, E.W., Crowder, L.B. and McCollum, S.A. (1998) Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79, 1980-1994.

    Google Scholar 

  • McCormick, P.V. and Stevenson, R.J. (1989) Effects of snail grazing on benthic algal community structure in different nutrient environments. J. N. Am. Benthol. Soc. 8, 162-172.

    Google Scholar 

  • McCormick, P.V. and Stevenson, R.J. (1991) Grazer control of nutrient availability in the periphyton. Oecologia 86, 287-291.

    Google Scholar 

  • Meulemans, J.T. and Heinis, F. (1983) Biomass and production of periphyton attached to dead reed stems in Lake Maarsseveen. In: Wetzel, R.G. (ed.), Periphyton of Freshwater Ecosystems. Dr W. Junk Publishers, The Hague, pp. 169-173.

    Google Scholar 

  • Momba, M.N.B., Kfir, R., Venter, S.N. and Cloete, T.E. (2000) Overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water S.A. 26, 59-66.

    Google Scholar 

  • Montgomery, W.L. and Gerking, S.D. (1980) Marine macroalgae as foods for fishes: an evaluation of potential food quality. Environ. Biol. Fish. 5, 143-153.

    Google Scholar 

  • Mulholland, P.J., Marzolf, E.R., Hendricks, S.P. and Wilkerson, R.V. (1995) Longitudinal patterns of nutrient cycling and periphyton characteristics in streams: a test of upstreamdownstream linkage. J. N. Am. Benthol. Soc. 14, 357-370.

    Google Scholar 

  • Nather Khan, I.S.A., Furtado, J.I. and Lim, R.P. (1987) Periphyton on artificial and natural substrates in a tropical river. Arch. Hydrobiol. Beih. Ergebn. Limnol. 28, 473-484.

    Google Scholar 

  • Nielsen, P.H., Jahn, A. and Palmgren, R. (1997) Conceptual model for production and composition of exopolymers in biofilms. Water Sci. Technol. 36, 11-19.

    Google Scholar 

  • Norberg, J. (1999) Periphyton fouling as a marginal energy source in tropical tilapia cage farming. Aquacult. Res. 30, 427-430.

    Google Scholar 

  • Ogden, J.C. and Lobel, P.S. (1978) The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fish. 3, 49-63.

    Google Scholar 

  • O'Toole, G., Kaplan, H.B. and Kolter, R. (2000) Biofilm formation as microbial development. Ann. Rev. Microbiol. 54, 49-79.

    Google Scholar 

  • Pan, Y. and Lowe, R.L. (1994) Independent and interactive effects of nutrients and grazers on benthic algal community structure. Hydrobiologia 291, 201-209.

    Google Scholar 

  • Pardue, G.B. (1973) Production response of the bluegill sunfish, Lepomis macrochirus Rafinesque, to added attachment surface for fishfood organisms. Trans. Am. Fish. Soc. 3, 622-626.

    Google Scholar 

  • Pauly, D. (1976) The biology, fishery and potential for aquaculture of Tilapia melanotheron in a small West African lagoon. Aquaculture 7, 33-49.

    Google Scholar 

  • Pauly, D. and Christensen, V. (1995) Primary production required to sustain global fisheries. Nature 374, 255-257.

    Google Scholar 

  • Phillips, P., Russell, A., Bender, J. and Muñoz, R. (1994) Management plan for utilization of a floating microbial mat with its assciated detrital gelatinous layer as a complete tilapia Oreochromis niloticus feed system. Bioresour. Technol. 47, 239-245.

    Google Scholar 

  • Planas, D., Lapierre, L., Moreau, G. and Allard, M. (1989) Structural organization and species composition of a lotic periphyton community in response to experimental acidification. Can. J. Fish. Aquat. Sci. 46, 827-835.

    Google Scholar 

  • Polunin, N.V.C. (1988) Efficient uptake of algal production by a single resident herbivorous fish on the reef. J. Exp. Mar. Biol. Ecol. 123, 61-76.

    Google Scholar 

  • Polunin, N.V.C. and Brothers, E.B. (1989) Low efficiency of dietary carbon and nitrogen conversion to growth in an herbivorous coral-reef fish in the wild. J. Fish Biol. 35, 869-879.

    Google Scholar 

  • Power, M.E., Dudley, T.L. and Cooper, S.D. (1989) Grazing catfish, fishing birds, and attached algae in a Panamanian stream. Environmental Biology of Fishes 26(4), 285-294.

    Google Scholar 

  • Power, M.E., Stewart, A.J. and Matthews, W.J. (1988) Grazer control of algae in an Ozark mountain stream: effects of shortterm exclusion. Ecology 69(6), 1894-1898.

    Google Scholar 

  • Putz, R. (1997) Periphyton communities in Amazonian blackand whitewater habitats: community structure, biomass and productivity. Aquatic Science 59, 74-93.

    Google Scholar 

  • Rahmatullah, S.M., Beveridge, M.C.M., van Dam, A.A., Wahab, M.A. and Baird, D.J. (2001) Functional feeding morphometry and grazing efficiencies in indigenous periphyton-feeding fish species. Summary report. In: Keshavanath, P. and Wahab, M.A. (eds.), Periphyton-Based Aquaculture and Its Potential in Rural Development. Summaty of an EC-INCO-Funded Workshop, Ahsania Mission, Dhaka, Bangladesh, 29-31 January 2001. Asian Fisheries Society, Indian Branch, Mangalore, p. 23.

    Google Scholar 

  • Ramesh, M.R., Shankar, K.M., Mohan, C.V. and Varghese, T.J. (1999) comparison of three plant substrates for enhancing carp growth through bacterial biofilm. Aquacult. Eng. 19, 119-131.

    Google Scholar 

  • Reid, G.K. and Wood, R.D. (1976) Ecology of Inland Waters and Estuaries, 2nd edn. D. van Nostrand Company, New York, 584 pp.

    Google Scholar 

  • Rodeheffer, I.A. (1940) The use of brush shelters by fish in Douglas Lake, Michigan. Pap. Mich. Acad. Sci., Arts and Letters 25, 357-366.

    Google Scholar 

  • Roger, P.A. (1996) Biology and Management of the Floodwater Ecosystem in Ricefields. International Rice Research Institute, Manila, 250 pp.

    Google Scholar 

  • Romaní, A.M. (2000) Characterization of extracellular enzyme kinetics in two Mediterranean streams. Arch. Hydrobiol. 148, 99-117.

    Google Scholar 

  • Romaní, A.M. and Sabater, S. (2000) Influence of algal biomass on extracellular enzyme activity in river biofilms. Microb. Ecol. 40, 16-24.

    Google Scholar 

  • Rosan, B. and Lamont, R.J. (2000) Dental plaque formation. Microbes and Infection 2, 1599-1607.

    Google Scholar 

  • Rothuis, A.J., Vromant, N., Xuan, V.T., Richter, C.J.J. and Ollevier, F. (1999) The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded rice-fish culture. Aquaculture 172, 255-274.

    Google Scholar 

  • Sand-Jensen, K. and Borum, J. (1991) Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 41, 137-175.

    Google Scholar 

  • Sansone, U., Belli, M., Riccardi, M., Alonzi, A., Jeran, Z., Radojko, J., Smodis, B., Montanari, M. and Cavolo, F. (1998) Adhesion of water-borne particulates on freshwater biota. The Science of the Total Environment 219, 21-28.

    Google Scholar 

  • Saravia, L.A., Momo, F. and Lissin, L.D.B. (1998) Modelling periphyton dynamics in running water. Ecol. Model. 114, 35-47.

    Google Scholar 

  • Scholz, O. and Boon, P.I. (1993) Biofilm development and extracellular enzyme activities on wood in billabongs of south-eastern Australia. Freshwat. Biol. 30, 359-368.

    Google Scholar 

  • Schroeder, G.L. (1978) Autotrophic and heterotrophic production of microorganisms in intensely-manured fish ponds, and related fish yields. Aquaculture 14, 303-325.

    Google Scholar 

  • Schroeder, G.L., Wohlfarth, G., Alkon, A., Helevy, A. and Krueger, H. (1990) The dominance of algal-based food webs in fish ponds receiving chemical fertilizers plus organic manures. Aquaculture 86, 219-229.

    Google Scholar 

  • Senanayake, F.R. (1981) The athkotu (brush-park) fishery of Sri Lanka. ICLARM Newsletter 4, 20-21.

    Google Scholar 

  • Shankar, K.M., Mohan, C.V. and Nandeesha, M.C. (1998) Promotion of substrate based microbial biofilm in ponds-a low cost technology to boost fish production. Naga 21, 18-22.

    Google Scholar 

  • Sherman, J.W. and Fairchild, G.W. (1989) Algal periphyton community response to nutrient manipulation in softwater lakes. J. Phycol. 25(2 suppl.), 13.

    Google Scholar 

  • Shrestha, M.K. and Knud-Hansen, C.F. (1994) Increasing attached microorganism biomass as a management strategy for Nile tilapia (Oreochromis niloticus) production. Aquacult. Eng. 13, 101-108.

    Google Scholar 

  • Smith, D.W. and Piedrahita, R.H. (1988) The relation between phytoplankton and dissolved oxygen in fish ponds. Aquaculture 68, 249-265.

    Google Scholar 

  • Sommer, U. (1996) Nutrient competition experiments with periphyton from the Baltic Sea. Mar. Ecol. Progr. Ser. 140, 161-167.

    Google Scholar 

  • Steinman, A.D., Mulholland, P.J. and Hill, W.R. (1992) Functional responses associated with growth form in stream algae. J. N. Am. Benthol. Soc. 11, 229-243.

    Google Scholar 

  • Steneck, R.S. (1988) Herbivory on Coral Reefs: A Synthesis. Proceedings of the 6th International Coral Reef Symposium, Australia 1988, Vol. 1, pp. 37-49.

  • Stickney, R.R. and Shumway, S.E. (1974) Occurrence of cellulase activity in the stomachs of fishes. J. Fish Biol. 6, 779-790.

    Google Scholar 

  • Swamikannu, X. and Hoagland, K.D. (1989) Effects of snail grazing on the diversity and structure of a periphyton community in a eutrophic pond. Can. J. Fish. Aquat. Sci. 46: 1698-1704.

    Google Scholar 

  • Stanley, J.G. and Jones, J.J. (1976) Feeding algae to fish. Aquaculture 7, 219-223.

    Google Scholar 

  • Targett, N.M., Boettcher, A.A., Targett, T.E. and Vrolijk, N.H. (1995) Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103, 170-179.

    Google Scholar 

  • Teichert-Coddington, D. and Green, B.W. (1993) Tilapia yield improvement through maintenance of minimal oxygen concentrations in experimental growout ponds in Honduras. Aquaculture 118, 63-71.

    Google Scholar 

  • Thompson, A.J. and Sinsabaugh, R.L. (2000) Matric and particulate phosphatase and aminopeptidase activity in limnetic biofilms. Aquat. Microb. Ecol. 21, 151-159.

    Google Scholar 

  • Tidwell, J.H., Coyle, S.D. and Schulmeister, G. (1998) Effects of added substrate on the production and population characteristics of freshwater prawns Macrobrachium rosenbergii in ponds. J. World Aquacult. Soc. 29, 17-22.

    Google Scholar 

  • Tidwell, J.H., Coyle, S.D., van Arnum, A. and Weibel, C. (2000) production response of freshwater prawns Macrobrachium rosenbergii to increasing amounts of artificial substrate in ponds. J. World Aquacult. Soc. 31, 452-458.

    Google Scholar 

  • Tidwell, J.H., Coyle, S.D., Weibel, C. and Evans, J. (1999) Effects of interactions of stocking density and added substrate on production and population structure of freshwater prawns Macrobrachium rosenbergii. J. World Aquacult. Soc. 30, 174-179.

    Google Scholar 

  • Umesh, N.R., Shankar, K.M. and Mohan, C.V. (1999) Enhancing growth of common carp, rohu and Mozambique tilapia through plant substrate: the role of bacterial biofilm. Aquaculture International 7, 251-260.

    Google Scholar 

  • Van Rooij, J.M., Videler, J.J. and Bruggeman, J.H. (1998) High biomass and production but low energy transfer efficiency of Caribbean parrotfish: implications for trophic models of coral reefs. J. Fish Biol. 53(Supplement A), 154-178.

    Google Scholar 

  • Vymazal, J., Craft, C.B. and Richardson, C.J. (1994) Periphyton response to nitrogen and phosphorous additions in Florida Everglades. Arch. Hydrobiol. Suppl. 103, 75-97.

    Google Scholar 

  • Wahab, M.A. and Kibria, M.G. (1994). Katha and kua fisheries-unusual fishing methods in Bangladesh. Aquaculture News 18, 24.

    Google Scholar 

  • Wahab, M.A., Azim, M.E., Ali, M.H., Beveridge, M.C.M. and Khan, S. (1999) The potential of periphyton-based culture of the native major carp calbaush, Labeo calbasu (Hamilton). Aquacult. Res. 30, 409-419.

    Google Scholar 

  • Weinzierl, S. and Vennemann, K. (2001) The origin of “acadja” branches and transport routes in the Province Atlantique. Internet URL http://www.uni-hohenheim.de/~atlas308/c..cts/c3_3/html/ english/btext_en_c3_3.htm. 25/01/2001.

  • Weitzel, R.L. (1979) Periphyton measurements and applications. In: Weitzel, R.L. (ed.), Methods and Measurements of Periphyton Communities: A Review. American Society for Testing and Materials, STP 690, pp. 3-33.

  • Welch, E.B., Quinn, J.M. and Hickey, C.W. (1992) Periphyton biomass related to point-source nutrient enrichment in seven New Zealand streams. Water Research 26, 669-675.

    Google Scholar 

  • Welcomme, R.L. (1972) An evaluation of the acadja method of fishing as practised in the coastal lagoons of Dahomey (West Africa). J. Fish Biol. 4, 39-55.

    Google Scholar 

  • Welcomme, R.L. (1985) River fisheries. In: FAO Fish. Tech. Pap., Vol. 262. Food and Agriculture Organization, Rome.

    Google Scholar 

  • Westlake, D.F., Adams M.S., Bindloss, M.E., Ganf, G.G., Gerloff, G.C., Hammer, U.T., Javornicky, P., Koonce, J.F., Marker, A.F.H., McCracken, M.D., Moss, B., Nauwerck, A., Pyrina, I.L., Steel, J.A.P., Tilzer, M. and Walters, C.J. (1980) Primary production. In: LeCren, E.D. and Lowe-McConnell, R.H. (eds.), The Functioning of Freshwater Ecosystems (International Biological Programme 22). Cambridge University Press, Cambridge, 588 pp.

    Google Scholar 

  • Wetzel, R.G. (1964) A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large, shallow lake. Int. Rev. Ges. Hydrobiol. 48, 1-61.

    Google Scholar 

  • Wetzel, R.G. (1975) Limnology. W.B. Saunders Comp., Philadelphia, 743 pp.

    Google Scholar 

  • Wetzel, R.G., Ward, A.K. and Stock, M. (1997) Effects of natural dissolved organic matter on mucilaginous matrices of biofilm communities. Arch. Hydrobiol. 139, 289-299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dam, A.A., Beveridge, M.C., Azim, M.E. et al. The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries 12, 1–31 (2002). https://doi.org/10.1023/A:1022639805031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022639805031

Navigation