Skip to main content
Log in

Effects of Repeated Administration of Baclofen to Rats on GABAB Receptor Binding Sites and Subunit Expression in the Brain

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Repeated stimulation of the GABAB receptor with baclofen frequently produces tolerance, the underlying mechanisms of which are poorly understood. The purpose of the present work was to determine whether repeated administration of baclofen to rats is accompanied by changes in cerebral GABAB receptor binding sites, mRNA for the subunits GABAB(1) and GABAB(2), and protein levels for these subunits. Rats were injected with placebo or baclofen (20 μmmol/kg subcutaneously) once daily for 14 days. Decreases in body temperature were measured as an index of pharmacological effects of baclofen. Binding of radiolabeled GABA to GABAB receptors was quantitated in brain membranes, mRNA levels were determined using quantitative real-time PCR, and GABAB receptor protein levels were assessed with Western blot analysis. Baclofen caused a decline in temperature amounting to approximately 2.5 °C after the first dose. This effect was partly lost after the fifth and abolished after the seventh injection. Despite the complete development of tolerance, there were no significant alterations in GABAB receptor binding sites (number or affinity) or mRNA levels for the subtypes GABAB(1a), GABAB(1b), or GABAB(2). Receptor protein levels were also unchanged. It is concluded that baclofen induces tolerance through mechanisms other than down-regulation of GABAB receptor transcription or translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bowery, N. G. and Enna, S. J. 2000. γ-Aminobutyric acidB receptors: first of the functional metabotropic heterodimers. J. Pharmacol. Exp. Therap. 292:2–7.

    Google Scholar 

  2. Couvé, A., Moss, S. J., and Pangalos, M. N. 2000. GABAB receptors: a new paradigm in G protein signaling. Mol. Cell. Neurosci. 16:296–312.

    PubMed  Google Scholar 

  3. Faigle, J. W. and Keberle, H. 1972. The chemistry and kinetics of Lioresal. Postgrad. Med. J. 48 (Suppl. 5):9–13.

    Google Scholar 

  4. Gordon, N. C., Gear, R. W., Heller, P. H., Paul, S., Miaskowski, C., and Levine, J. D. 1995. Enhancement of morphine analgesia by the GABAB agonist baclofen. Neuroscience 69:345–349.

    PubMed  Google Scholar 

  5. Ramirez, F. C. and Graham, D. Y. 1992. Treatment of intractable hiccup with baclofen: results of a double-blind randomized, controlled, cross-over study. Am. J. Gastroenterol. 87: 1789–1791.

    PubMed  Google Scholar 

  6. Dicpinigaitis, P. V. and Dobkin, J. B. 1997. Antitussive effect of the GABA-agonist baclofen. Clin. Invest. 111:996–999.

    Google Scholar 

  7. Lehmann, A., Antonsson, M., Bremner-Danielsen, M., Flärdh, M., Hansson-Brändén, L., and Kärrberg, L. 1999. Activation of the GABAB receptor inhibits transient lower esophageal sphincter relaxations in dogs. Gastroenterology 117:1147–1154.

    PubMed  Google Scholar 

  8. Blackshaw, L. A., Staunton, E., Lehmann, A., and Dent, J. 1999. Inhibition of transient LES relaxations and reflux in ferrets by GABA receptor agonists. Am. J. Physiol. 277:G867–G874.

    PubMed  Google Scholar 

  9. Lidums, I., Lehmann, A., Checklin, H., Dent, J., and Holloway, R. H. 2000. Control of transient lower esophageal sphincter relaxations and reflux by the GABAB agonist baclofen in normal subjects. Gastroenterology 118:7–13.

    PubMed  Google Scholar 

  10. Zhang, Q., Lehmann, A., Rigda, R., Dent, J., and Holloway, R. H. 2002. Control of transient lower oesophageal sphincter relaxations and reflux by the GABAB agonist baclofen in patients with gastro-oesophageal reflux disease. Gut 50:19–24.

    PubMed  Google Scholar 

  11. Ferguson, S. S. G. 2001. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53:1–24.

    PubMed  Google Scholar 

  12. Grady, E. F., Böhm, S. K., and Bunnett, N. W. 1997. Turning off the signal: mechanisms that attenuate signaling by G-protein-coupled receptors. Am. J. Physiol. 273:G586–G601.

    PubMed  Google Scholar 

  13. Harrison, L. M., Kastin, A. J., and Zadina, J. E. 1998. Opiate tolerance and dependence: Receptors, G-proteins and opiates. Peptides 19:1603–1630.

    PubMed  Google Scholar 

  14. Gray, J. A., Goodwin, G. M., Heal, D. J., and Green A. R. 1987. Hypothermia induced by baclofen, a possible index of GABAB receptor function in mice, is enhanced by antidepressant drugs and ECS. Br. J. Pharmacol. 92:863–870.

    PubMed  Google Scholar 

  15. Ghelardini, C., Galeotti, N., and Bartolini, A. 1998. No development of tolerance to analgesia by repeated administration of H1 antagonists. Life Sci. 63:317–322.

    PubMed  Google Scholar 

  16. Enna, S. J., Harstad, E. B., and McCarson, K. E. 1998. Regulation of neurokinin-1 receptors expression by GABAB receptor agonists. Life Sci. 62:1525–1530.

    PubMed  Google Scholar 

  17. Pratt, G. D. and Bowery, N. G. 1993. Repeated administration of desipramine and a GABAB receptor antagonist, CGP 36742, discretely up-regulates GABAB receptor binding sites in rat frontal cortex. Br. J. Pharmacol. 110:724–735.

    PubMed  Google Scholar 

  18. Lehmann, A., Hansson-Brändén, L., and Kärrberg, L. 2000. Effects of repeated administration of baclofen on transient lower esophageal sphincter relaxation in the dog. Eur. J. Pharmacol. 403:163–167.

    PubMed  Google Scholar 

  19. Malcangio, M., Libri, V., Teoh, H., Constanti, A., and Bowery, N. G. 1995. Chronic (-)baclofen or CGP 36742 alters GABAB receptor sensitivity in rat brain and spinal cord. Neuroreport 6:399–403.

    PubMed  Google Scholar 

  20. Suzdak, P. D. and Gianutsos, G. 1986. Effect of chronic imipramine or baclofen on GABA-B binding and cyclic AMP production in cerebral cortex. Eur. J. Pharmacol. 131:129–133.

    PubMed  Google Scholar 

  21. Kroin, J. S., Bianchi, G. D., and Penn, R. D. 1993. Intrathecal baclofen down-regulates GABAB receptors in rat substantia gelatinosa. J. Neurosurg. 79:544–549.

    PubMed  Google Scholar 

  22. Malcangio, M., Da Silva, H., and Bowery, N. G. 1993. Plasticity of GABAB receptor in rat spinal cord detected by autoradiography. Eur. J. Pharmacol. 250:153–156.

    PubMed  Google Scholar 

  23. Zukin, S. R., Young, A. B., and Snyder, S. H., 1974. Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc. Natl. Acad. Sci. USA 71:4802–4807.

    PubMed  Google Scholar 

  24. Olpe, H. R., Karlsson, G., Pozza, M. F., Brugger, F., Steinmann, M., Van Riezen, H., Fagg, G., Hall, R. G., Froestl, W., and Bit-tiger, H. 1990. CGP 35348: A centrally active blocker of GABAB receptors. Eur. J. Pharmacol. 187:27–38.

    PubMed  Google Scholar 

  25. Poorkhalkali, N., Juneblad, K., Jönsson, A.-C., Lindberg, M., Karlsson, O., Wallbrandt, P., Ekstrand, J., and Lehmann, A. 2000. Immunocytochemical distribution of the GABAB receptor splice variants GABAB R1a and R1b in the rat CNS and dorsal root ganglia. Anat. Embryol. 201:1–13.

    PubMed  Google Scholar 

  26. Kaupmann, K., Heggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B. 1997. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246.

    PubMed  Google Scholar 

  27. Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W.-J., Johnson, M., Gunwaldsen, C. A., Huang, L.-Y., Tang, C., Shen, Q., Salon, J. A., Morse, K., Laz, T., Smith, K. E., Nagarathnam, D., Noble, S. A., Branchek, T. A., and Gerald, C. 1998. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674–679.

    PubMed  Google Scholar 

  28. Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand J. Statist. 6:65–70.

    Google Scholar 

  29. Facklam, M. and Bowery, N. G., 1993. Solubilization and characterization of GABAB receptor binding sites from porcine brain synaptic membranes. Br. J. Pharmacol. 110:1291–1296.

    PubMed  Google Scholar 

  30. Couvé, A., Thomas, P., Calver, A. R., Hirst, W. D., Pangalos, M. N., Walsh, F. S., Smart, T. G., and Moss, S. J. 2002. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABAB receptor-effector coupling. Nat. Neurosci. 5:415–424.

    PubMed  Google Scholar 

  31. Bohn, L. M., Gainetdinov, R. R., Lin, F. T., Lefkowitz, R. J., and Caron, M. 2000. μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723.

    PubMed  Google Scholar 

  32. Keith, D. E., Anton, B., Murray, S. R., Zaki, P. A., Chu, P. C., Lissin, D. V., Monteillet-Agius, G., Stewart, P. L., Evand, C. J., and von Zastrow, M. 1998. μ-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Mol. Pharmacol. 53:377–384.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, A., Mattsson, J.P., Edlund, A. et al. Effects of Repeated Administration of Baclofen to Rats on GABAB Receptor Binding Sites and Subunit Expression in the Brain. Neurochem Res 28, 387–393 (2003). https://doi.org/10.1023/A:1022353923578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022353923578

Navigation