Skip to main content
Log in

Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As an attempt to develop environmentally friendly polymer hybrids, biodegradable thermoplastic starch (TPS)/clay nanocomposites were prepared through melt intercalation method. Natural montrorillonite (Na+ MMT; Cloisite Na+) and one organically modified MMT with methyl tallow bis-2-hydroxyethyl ammonium cations located in the silicate gallery (Cloisite 30B) were chosen in the nanocomposite preparation. TPS was prepared from natural potato starch by gelatinizing and plasticizing it with water and glycerol. The dispersion of the silicate layers in the TPS hybrids was characterized by using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). It was observed that the TPS/Cloisite Na+ nanocomposites showed higher tensile strength and thermal stability, better barrier properties to water vapor than the TPS/Cloisite 30B nanocomposites as well as the pristine TPS, due to the formation of the intercalated nanostructure. The effect of clay contents on the tensile, dynamic mechanical, and thermal properties as well as the barrier properties of the nanocomposites were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Rakeuchi and C. Cohen, Macromolecules 32 (1999) 6792.

    Google Scholar 

  2. J. A. Brydson, in “Plastic Materials,”3rd ed. (Butterworth & Co, London) 1975) p. 1.

    Google Scholar 

  3. G. L. Robertson, in “Food Packaging” (Marcel Dekker, New York, 1993).

    Google Scholar 

  4. A. Ova, Y. Kurokawa and H. Yasuda, J. Mater.Sci. 35 (2000) 1045.

    Google Scholar 

  5. A. Usuki, T. Mizutani, Y. Rukushima, M. Fujimoto, K. Fukumori, Y. Kojima, N. Sato, T. Kurauchi and O. Kamigaito, US Patent,889,885 (1989).

  6. Y. Yang, Z. Zhu, J. Yin, X. Wang and Z. Qi, Polymer 40 (1999) 4407.

    Google Scholar 

  7. L. Biasci, M. Aglietto, G. Ruggeri and F. Ciardelli, ibid. 35 (1994) 3296.

    Google Scholar 

  8. D. C. Lee and L. W. Jang, J. Appl. Polym. Sci. 61 (1996) 117.

    Google Scholar 

  9. E. R. George, T. M. Sullivan and E. H. Park, Polym. Eng. Sci. 34 (1994) 17.

    Google Scholar 

  10. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukishima, T. Kurauchi and O. Kamicaito, J. Mater. Res. 8 (1993) 1179.

    Google Scholar 

  11. C. D. Muzny, B. D. Butler, H. J. M. Hanley, F. Tsvetkov and D. G. Peiffer, Mater. Lett. 28 (1996) 379.

    Google Scholar 

  12. M. Kato, A. Usuki and A. Okada, J. Appl. Ploym. Sci. 66 (1997) 1781.

    Google Scholar 

  13. Y. Fukushima, A. Okada, M. Kawasumi, T. Kurauchi and O. Kamigaito, Clay Miner. 23 (1988) 27.

    Google Scholar 

  14. R. Gangopadhyay and A. De, Chem. Mater. 12 (2000) 608.

    Google Scholar 

  15. H. J. Choi, S. G. Kim, Y. H. Hyun and M. S. Jhon, Macromol.Rapid.Comm. 22 (2001) 320.

    Google Scholar 

  16. N. Hasebawa, M. Kawasumi, M. Kato, A. Usuki and A. Okada, J. Appl. Polym. Sci. 67 (1998) 87 and references therein.

    Google Scholar 

  17. K. A. Carrado, Appl. Clay Sci. 17 (2000) 1.

    Google Scholar 

  18. Special issue on “Nanostructured Materials,” Chem. Mater. 8 (1996) 1569 and references therein.

  19. R. Kirshnamoorti, R. A. Vaia and E. P. Giannelis, ibid. 8 (1998) 1728.

    Google Scholar 

  20. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi and O. Kamigaito, J. Appl. Polym. Sci. 55 (1995) 119.

    Google Scholar 

  21. P. C. Lebaron, Z. Wang and T. J. Pinnavaia, Appl. Clay Sci. 15 (1999) 11.

    Google Scholar 

  22. M. Alexandre and P. Duois, Mater. Sci. Eng. 28 (2000) 1.

    Google Scholar 

  23. M. Zanetti, S. Lomakin and G. Camino, Macromol. Mater. Eng. 279 (2000) 1.

    Google Scholar 

  24. T. H. Mchugh, R. A. Bustillos and J. M. Krochta, J. Food. Sci. 58 (1993) 899.

    Google Scholar 

  25. P. B. Messersmith and E. P. Giannelis, J. Polym. Sci., Part A: Polym. Chem. 33 (1995) 1047.

    Google Scholar 

  26. J. A. Tetto, D. M. Steeves, E. A. Welsh and B. E. Powell, TIANTEC (1999) 1628.

  27. S. T. Lim, Y. H. Hyun and H. J. Choi, Chem. Mater. 14 (2002) 1839.

    Google Scholar 

  28. M. Vikman, S. H. D. Hulleman, M. van der Zee, P. Myllarinen and H. Feil, J. Appl. Polym. Sci. 74 (1998) 2594.

    Google Scholar 

  29. W. K. Lee, Y. Doi and C. S. Ha, Macromol. Biosci. 1 (2001) 114.

    Google Scholar 

  30. C. S. Ha and W. J. Cho, Prog. Polym. Sci. 27 (2002) 759.

    Google Scholar 

  31. S. R. Lee, H. M. Park, H. T. Lim, T. K. Kang, X. Li, W. J. cho and C. S. Ha, Polymer 43 (2002) 2495.

    Google Scholar 

  32. J. J. G. van Soest, K. Benes and D. de Wit, ibid. 37 (1996) 3543.

    Google Scholar 

  33. R. A. Vaia and E. P. Giannelis, Macromolecules 30 (1997) 8000.

    Google Scholar 

  34. X. Li, T. K. Kang, W. J. Cho, J. K. Lee and C. S. Ha, Macromol. Rapid. Comm. 22 (2001) 1310.

    Google Scholar 

  35. Y. Kojima, K. Kukumori, A. Usuki, A. Okada and T. Kurauchi, J. Mater. Sci. Lett. 12 (1993) 889.

    Google Scholar 

  36. K. Yano, A. Usuki and A. Okada, J. Polym. Sci., Part A: Polym. Chem. 35 (1997) 2289.

    Google Scholar 

  37. E. L. Cussler, S. E. Highes, W. J. Ward and R. Aris, J. Mem. Sci. 38 (1998) 161.

    Google Scholar 

  38. W. J. Ward, G. L. Gaines, M. M. Alger and T. J. Stanley, ibid. 55 (1991) 173.

    Google Scholar 

  39. T. Lan, P. D. Kaviratna and T. J. Pinnavaia, Chem. Mater. 6 (1994) 573.

    Google Scholar 

  40. L. Averous, N. Fauconnier, L. Moro and C. Fringant, J. Appl. Polym. Sci. 76 (2000) 1117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HM., Lee, WK., Park, CY. et al. Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites . Journal of Materials Science 38, 909–915 (2003). https://doi.org/10.1023/A:1022308705231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022308705231

Keywords

Navigation