Skip to main content
Log in

Dependence of Whitecap Coverage on Wind and Wind-Wave Properties

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Using Phillips equilibrium range theory and observational data, we show first that the total rates of wave energy dissipation estimated by the Hasselmann and Phillips dissipation models are substantially consistent with each other, though their original forms are different. Both are proportional to the cube of air friction velocity, u * 3, with a weak dependence on wave age. As a direct manifestation of the wave energy dissipation processes, we reanalyze previous observational data of whitecap coverage and find that it has greater correlation with the wind speed or friction velocity than the wave period or wave age. However, the data scatter decreases remarkably when the breaking-wave parameter R B = u * 2/νω p is used, where ν is the kinematic viscosity of air, and ω p , the wind-wave spectral peak frequency. Physical interpretation of R B with some related issues, and a discussion of the probability models of whitecap coverage in terms of a threshold mechanism, are also presented. We conclude that R B is a good parameter to effectively express the overall wave breaking behavior for the case of wind-waves in local equilibrium with the wind. Since R B can be expressed as the product of u * 3 and the wave age, this result demonstrates a stronger dependence of whitecap coverage on wave age than expected by the previous description by power-laws of u * and by the two theoretical models. Our conclusion suggests that current dissipation models should also be modified to represent full properties of wind-wave breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, R. J., I. S. F. Jones and Y. Toba (1991): The steepness and shape of wind waves. J. Oceanogr. Soc. Japan, 47, 249–264.

    Article  Google Scholar 

  • Banner, M. L. and X. Tian (1998): On the determination of the onset of wave breaking for modulating surface gravity water waves. J. Fluid Mech., 367, 107–137.

    Article  Google Scholar 

  • Banner, M. L., A. V. Babanin and I. R. Young (2000): Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30, 3145–3160.

    Article  Google Scholar 

  • Blanchard, D. C. (1963): The electrification of the atmosphere by particles from bubbles in the sea. Progress in Oceanography, Vol. 1, Pergamon Press, 71–202.

  • Cardone, V. J. (1970): Specification of the Wind Distribution in the Marine Boundary Layer for Wave Forecasting. New York University, 131 pp.

  • Dold, J. W. and D. H. Peregrine (1986): Water-wave modulations. Proceedings of the 20th International Conference on Coastal Engineering, ASCE, Taipei, 1, 163–165.

    Google Scholar 

  • Donelan, M. A., M. Skafel, H. Graber, P. Liu, D. Schwab and S. Venkatesh (1992): On the growth rate of wind-generated waves. Atmos.-Ocean, 30, 457–478.

    Google Scholar 

  • Doyle, D. M. (1984): Marine aerosol research in the Gulf of Alaska and on the Irish West Coast (Inishmore). Whitecaps and the Marine Atmosphere Rep. 6, University College, Galway, Ireland.

    Google Scholar 

  • Ebuchi, N., Y. Toba and H. Kawamura (1992): Statistical study on the local equilibrium between wind and wind waves by using data from ocean data buoy stations. J. Oceanogr., 48, 77–92.

    Article  Google Scholar 

  • Ebuchi, N., H. Kawamura and Y. Toba (1993): Bursting phenomena in the turbulent boundary layer beneath the laboratory wind-wave surface. p. 263–276. In Natural Physical Sources of Underwater Sound, ed. by B. Kerman, Kluwer Acad. Pub.

  • Felizardo, F. C. and W. K. Melville (1995): Correlations between ambient noise and the ocean surface wave field. J. Phys. Oceanogr., 25, 513–532.

    Article  Google Scholar 

  • Glazman, R. E. (1986): Statistical characteristics of sea surface geometry for a wave slope field discontinuous in the mean square. J. Geophys. Res., 91, 6629–6641.

    Google Scholar 

  • Glazman, R. E. and A. Greysukh (1993): Satellite altimeter measurements of surface wind. J. Geophys. Res., 98, 2475–2483.

    Google Scholar 

  • Hanson, J. L. and O. M. Phillips (1999): Wind sea growth and dissipation in the open ocean. J. Phys. Oceanogr., 29, 1633–1648.

    Article  Google Scholar 

  • Hasselmann, K. (1974): On the spectral dissipation of ocean waves due to whitecapping. Bound.-Layer Meteor., 126, 107–127.

    Google Scholar 

  • Hasselmann, K. and 15 authors (1973): Measurements of wind wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dt. Hydrogr. Z., A8(22), 95 pp.

    Google Scholar 

  • Holthuijsen, L. H. and T. H. C. Herbers (1986): Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr., 16, 290–297.

    Article  Google Scholar 

  • Iida, N., Y. Toba and M. Chaen (1992): A new expression for the production rate of sea water droplets on the sea surface. J. Oceanogr., 48, 439–460.

    Article  Google Scholar 

  • Kawai, S., K. Okada and Y. Toba (1977): Field data support of three seconds power law and the gu *σ−4-spectral form for growing wind waves. J. Oceanogr. Soc. Japan, 33, 137–150.

    Article  Google Scholar 

  • Kennedy, R. M. (1992): Sea surface dipole sound source dependence on wave-breaking variables. J. Acoust. Soc. Amer., 91, 1974–1982.

    Article  Google Scholar 

  • Kennedy, R. M. and R. L. Snyder (1983): On the formation of whitecaps by a threshold mechanism. Part II: Monte Carlo experiments. J. Phys. Oceanogr., 13, 1493–1504.

    Article  Google Scholar 

  • Komen, G. J., S. Hasselmann and K. Hasselmann (1984): On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 1271–1285.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. (1963): The generation of capillary waves by steep gravity waves. J. Fluid Mech., 16, 138–159.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. and N. D. Smith (1983): Measurement of breaking waves by a surface meter. J. Geophys. Res., 88, 9823–9831.

    Article  Google Scholar 

  • Mitsuyasu, H. and T. Honda (1982): Wind-induced growth of water waves. J. Fluid Mech., 123, 425–442.

    Article  Google Scholar 

  • Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda and K. Rikiishi (1980): Observation of the power spectrum of ocean waves using a clover-leaf buoy. J. Phys. Oceanogr., 10, 286–296.

    Article  Google Scholar 

  • Monahan, E. C. (1969): Fresh water whitecaps. J. Atmos. Sci., 26, 1026–1029.

    Article  Google Scholar 

  • Monahan, E. C. (1971): Oceanic whitecaps. J. Phys. Oceanogr., 1, 139–144.

    Article  Google Scholar 

  • Monahan, E. C. and I. G. O'Muircheartaigh (1980): Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 2094–2099.

    Article  Google Scholar 

  • Monahan, E. C. and I. G. O'Muircheartaigh (1982): Reply. J. Phys. Oceanogr., 12, 751–752.

    Article  Google Scholar 

  • Monahan, E. C. and M. Wilson (1993): Whitecap measurements. Critical Sea Test 7, Phase 2: Principal investigators' results. The Johns Hopkins University Applied Physics Laboratory Tech. Rep. STD-R-2258, ed. by F. T. Erskine and J. L. Hanson, 808 pp.

  • Monahan, E. C., I. G. O'Muircheartaigh and M. P. Fitzgerald (1981): Determination of surface wind speed from remotely measured whitecap coverage, a feasibility assessment. European Space Agency SP-167, 103-109.

  • Monahan, E. C., P. A. Bowyer, D. M. Doyle, M. R. Higgins and D. K. Woolf (1985): Whitecaps and the marine atmosphere. Whitecaps and the Marine Atmosphere Rep. 8, University College, Galway, Ireland.

    Google Scholar 

  • Ochi, M. K. and C. H. Tsai (1983): Prediction of occurrence of breaking waves in deep water. J. Phys. Oceanogr., 13, 2008–2019.

    Article  Google Scholar 

  • Phillips, O. M. (1985): Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505–531.

    Article  Google Scholar 

  • Plant, W. J. (1982): A relationship between wind stress and wave slope. J. Geophys. Res., 87(C3), 1961–1967.

    Google Scholar 

  • Rapp, R. J. and W. K. Melvill (1990): Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond., A331, 735–800.

    Google Scholar 

  • Ross, D. B. and V. Cardone (1974): Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. J. Geophys. Res., 79, 444–452.

    Google Scholar 

  • Schultz, W. W., J. Huh and O. M. Griffin (1994): Potential energy in steep and breaking waves. J. Fluid Mech., 278, 201–228.

    Article  Google Scholar 

  • Snyder, R. L., F. W. Dobson, J. A. Elliott and R. B. Long (1981): Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 1–59.

    Article  Google Scholar 

  • Snyder, R. L., L. Smith and R. M. Kennedy (1983): On the formulation of whitecaps by a threshold mechanism. Part III: Field experiment and comparison with theory. J. Phys. Oceanogr., 13, 1505–1518.

    Article  Google Scholar 

  • Tang, C. C. H. (1974): The effect of droplets in the air-sea transition zone on the sea brightness temperature. J. Phys. Oceanogr., 4, 579–593.

    Article  Google Scholar 

  • Toba, Y. (1972): Local balance in the air-sea boundary processes. I. On the growth processes of wind waves. J. Oceanogr. Soc. Japan, 28, 109–120.

    Article  Google Scholar 

  • Toba, Y. (1973): Local balance in the air-sea boundary processes. III. On the spectrum of wind waves. J. Oceanogr. Soc. Japan, 29, 209–220.

    Article  Google Scholar 

  • Toba, Y. (1978): Stochastic form of the growth of wind waves in a single-parameter representation with physical implications. J. Phys. Oceanogr., 8, 494–507.

    Article  Google Scholar 

  • Toba, Y. (1998): Wind-forced strong wave interactions and quasi-local equilibrium between wind and windsea with the friction velocity proportionality. p. 1-60. In Nonlinear Ocean Waves, ed. by W. Perrie, Computational Mechanics Publications, Southampton, U.K.

    Google Scholar 

  • Toba, Y. and M. Chaen (1973): Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Works Japan, 12, 1–11.

    Google Scholar 

  • Toba, Y. and H. Kawamura (1996): Wind-wave coupled downward-bursting boundary layer (DBBL) beneath the sea surface. J. Oceanogr., 52, 409–419.

    Article  Google Scholar 

  • Toba, Y. and M. Koga (1986): A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. p. 37-47. In Oceanic Whitecaps, ed. by E. C. Monahan and G. Mac Niocaill, Reidel Publishing Company.

  • Toba, Y., H. Kunishi, K. Nishi, S. Kawai, Y. Shimada and N. Shibata (1971): Study on the air-sea boundary processes at the Shirahama Oceanographic Tower Station. Disacs. Prev. Res. Inst. Kyoto Univ., Annals, 14B, 519–531 (in Japanese with English abstract).

    Google Scholar 

  • Toba, Y., S. Kizu and N. Ebuchi (1988): On-board quantitative wind-wave observations using a stop watch. Prel. Rep. of The Hakuho Maru Cruise KH-88-2 (OMLET Cruise), Ocean Res. Inst., Univ. of Tokyo, 35-44.

  • Toba, Y., Y. Suzuki and N. Iida (1999): Study on global distribution with seasonal variation of the whitecap coverage and sea-salt aerosol production on the sea surface. p. 355–356. In The Wind-Driven Air-Sea Interface, ed. by M. L. Banner, School of Mathematics, The University of New South Wales, Sydney, Australia.

    Google Scholar 

  • Tokuda, M. and Y. Toba (1981): Statistical characteristics of individual waves in laboratory wind waves. I. Individual wave spectra and similarity structure. J. Oceanogr. Soc. Japan, 37, 243–258.

    Article  Google Scholar 

  • Tulin, M. P. and J. J. Li (1992): On the breaking of energetic waves. J. Intl. Soc. Offshore and Polar Engng., 2, 46–53.

    Google Scholar 

  • WAMDI Group (1988): The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 1775–1810.

    Article  Google Scholar 

  • Wang, P., Y. Yao and M. P. Tulin (1993): Wave group evolution, wave deformation and breaking simulations using LONGTANK, a numerical wave tank. Proc. 3rd Intl. Offshore and Polar Engng Conf., Singapore, Vol. 27.

  • Wu, J. (1979): Oceanic whitecaps and sea state. J. Phys. Oceanogr., 9, 1064–1068.

    Article  Google Scholar 

  • Wu, J. (1982): Comments on “Optimal power-law description of oceanic whitecap coverage dependence on wind speed”. J. Phys. Oceanogr., 12, 750–751.

    Article  Google Scholar 

  • Wu, J. (1988a): Variations of whitecap coverage with wind stress and water temperature. J. Phys. Oceanogr., 18, 1448–1453.

    Article  Google Scholar 

  • Wu, J. (1988b): Wind-stress coefficients at light winds. J. Atmos. Oceanic Technol., 5, 885–888.

    Article  Google Scholar 

  • Xu, D., X. Liu and D. Yu (2000): Probability of wave breaking and whitecap coverage in a fetch-limited sea. J. Geophys. Res., 105, 14253–14259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Toba, Y. Dependence of Whitecap Coverage on Wind and Wind-Wave Properties. Journal of Oceanography 57, 603–616 (2001). https://doi.org/10.1023/A:1021215904955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021215904955

Navigation