Skip to main content
Log in

Contribution of amino compounds to dissolved organic nitrogen in forest soils

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Dissolved organic nitrogen (DON) may play an important role in plantnutrition and nitrogen fluxes in forest ecosystems. In spite of the apparentimportance of DON, there is a paucity of information concerning its chemicalcomposition. However, it is exactly this chemical characterization that isrequired to understand the importance of DON in ecosystem processes. Theprimaryobjective of this study was to characterize the distribution of free aminoacidsand hydrolyzable peptides/proteins in the DON fraction of Oa horizon leachatesalong an extreme edaphic gradient in northern California. Insitu soil solutions were extracted by centrifugation from Oahorizonscollected beneath Pinus muricata (Bishop pine) andCupressus pygmaea (pygmy cypress) on slightlyacidic/fertile and highly acidic/infertile sites. DON accounted for 77 to99% of the total dissolved nitrogen in Oa horizon leachates. Nitrogen infree amino acids and alkyl amines ranged from 0.04–0.07 mgN/L on the low fertility site to 0.45–0.49 mg N/L onthe high fertility site, and accounted for 1.5 to 10.6% of the DON fraction.Serine, glutamic acid, leucine, ornithine, alanine, aspartic acid andmethylamine were generally the most abundant free amino compounds. Combinedamino acids released by acid hydrolysis accounted for 48 to 74% of theDON, suggesting that proteins and peptides were the main contributor to DON inOa horizon leachates. Together, nitrogen from free andcombined amino compounds accounted for 59 to 78% of the DON. Most of theDON was found in the hydrophobic fraction, which suggests the presence ofprotein/peptide-polyphenol complexes or amino compounds associated withhumic substances. Because free and combined amino acids can be an importantnitrogen source for some plants, soil DON may play an important role in plantnutrition and ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuzinadah R.A. andRead D.J. 1986a. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol. 103: 481-493.

    Google Scholar 

  • Abuzinadah R.A. andRead D.J. 1986b. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol. 103: 507-514.

    Google Scholar 

  • Abuzinadah R.A. andRead D.J. 1989. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol. 112: 55-60.

    Google Scholar 

  • Arheimer B.,Andersson L. andLepisto A. 1996. Variation of nitrogen concentration in forest streams-influence of flow, seasonality and catchment characteristics. J. Hydrol. 197: 281-304.

    Google Scholar 

  • Bajwa R. andRead D.J. 1985. The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol. 101: 459-467.

    Google Scholar 

  • Bending G.D. andRead D.J. 1996. Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol. Biochem. 28: 1603-1612.

    Google Scholar 

  • Campbell J.L.,Hornbeck J.W.,McDowell W.H.,Buso D.C.,Shanley J.B. andLikens G.E. 2000. Dissolved organic nitrogen budgets for upland, forested ecosystems in New England. Biogeochem. 49: 123-142.

    Google Scholar 

  • Carlson R.M. 1978. Automated separation and conductimetric determination of ammonia and dissolved carbon dioxide. Anal. Chem. 50: 1528-1531.

    Google Scholar 

  • Carlson R.M. 1986. Continuous flow reduction of nitrate to ammonia with granular zinc. Anal. Chem. 58: 1590-1591.

    Google Scholar 

  • Chapin F.S. 1995. New cog in the nitrogen cycle. Nature 377: 199-200.

    Google Scholar 

  • Chapin F.S.,Moilanen L. andKielland K. 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150-153.

    Google Scholar 

  • Chapman P.J.,Edwards A.C.,Reynolds B.,Cresser M.S. andNeal C. 1998. The nitrogen content of rivers in upland Britain: The significance of organic nitrogen. IAHS Publ. No. 248. In: Hydrology, Water Resources and Ecology in Headwaters, Proceedings of HeadWater' 98 Conference, April 1998. Meran/Merano, Italy, 443-450.

    Google Scholar 

  • Confer D.R.,Logan B.E.,Aiken B.S. andKirchman D.L. 1995. Measurement of dissolved free and combined amino acids in unconcentrated wastewaters using high performance liquid chromatography. Water Environ. Res. 67: 120-125.

    Google Scholar 

  • Dahlgren R.A. 1993. Comparison of soil solution extraction procedures: effects on solute chemistry. Comm. Soil Sci. Plant Anal. 24: 1783-1794.

    Google Scholar 

  • Dahlgren R.A. andUgolini F.C. 1989. Aluminum fractionation of soil solutions from unperturbed and tephra-treated Spodosols, Cascade Range, Washington, USA. Soil Sci. Soc. Am. J. 53: 559-566.

    Google Scholar 

  • Fahey T. andYavitt J. 1988. Soil solution chemistry in lodgepole pine (Pinus contorta ssp. latifolia) ecosystems, southeastern Wyoming, USA. Biogeochem 6: 91-118.

    Google Scholar 

  • Finlay R.D.,Frostegard A. andSonnerfeldt A.M. 1992. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta. Dougl. Ex Loud. New Phytol. 120: 105-115.

    Google Scholar 

  • Griffiths P. andCaldwell B. 1992. Mycorrhizal mat communities in forest soils. In: Read D.,Lewis D.,Fitter A. andAlexander I. (eds), Mycorrhizas in Ecosystems. CAB International, Wallingford, 98-105.

    Google Scholar 

  • Gupta U.C. andReuszer H.W. 1967. Effect of plant species on the amino acid content and nitrification of soil organic matter. Soil Sci. 104: 395-400.

    Google Scholar 

  • Hagedorn F.,Schleppi P.,Waldner P. andFluhler H. 2000. Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments-the significance of water flow paths. Biogeochem. 50: 137-161.

    Google Scholar 

  • Harriman R.,Curtis C. andEdwards A.C. 1998. An empirical approach for assessing the relationship between nitrogen deposition and nitrate leaching from upland catchments in the United Kingdom using runoff chemistry. Water Air Soil Pollut. 105: 193-203.

    Google Scholar 

  • Hedin L.O.,Armesto J.J. andJohnson A.H. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76: 493-509.

    Google Scholar 

  • Jardine P.M.,Weber N.L. andMcCarthy J.F. 1989. Mechanism of dissolved organic carbon adsorption on soil. Soil Sci. Soc. Am. J. 53: 1378-1385.

    Google Scholar 

  • Jones B.N.,Paabo S. andStein S. 1981. Amino acid analysis and enzymatic sequence determination of peptides by an improved o-phthaldialdehyde precolumn labeling procedure. J. Liq. Chromatog. 4: 565-586.

    Google Scholar 

  • Kaiser K. andZech W. 1998. Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Sci. Soc. Amer. J. 62: 129-136.

    Google Scholar 

  • Keeney D.R. andBremner J.M. 1964. Effect of cultivation on nitrogen distribution in soils. Soil Sci. Soc. Am. Proc. 28: 653-656.

    Google Scholar 

  • Keil R.G. andKirchman D.L. 1991. Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method. Marine Chem. 33: 243-259.

    Google Scholar 

  • Khan S.U. 1971. Nitrogen fractions in a gray wooded soil as influenced by long-term cropping systems and fertilizers. Can. J. Soil Sci. 51: 431-437.

    Google Scholar 

  • Kroeff E.P. andPietrzyk D.J. 1978. Investigation of the retention and separation of amino acids, peptides, and derivatives on porous copolymers by high performance liquid chromatography. Anal. Chem. 50: 502-511.

    Google Scholar 

  • Leake J.R. andRead D.J. 1989. Effects of phenolic compounds on nitrogen mobilisation by ericoid mycorrhizal systems. Agric. Ecosys. Environ. 29: 225-236.

    Google Scholar 

  • Leenheer J.A. andHuffman E.W.D. 1979. Analytical method for dissolved-organic carbon fractionation. U.S. Geological Survey, Water-Resources Investigations, 79-84.

  • Lipson D.A.,Raab T.K.,Schmidt S.K. andMonson R.K. 1999. Variation in competitive abilities of plants and microbes for specific amino acids. Biol. Fertil. Soils 29: 257-261.

    Google Scholar 

  • Lytle C.R. andPerdue E.M. 1981. Free, proteinaceous, and humic-hound amino acids in river water containing high concentrations of aquatic humus. Environ. Sci. Technol. 15: 224-228.

    Google Scholar 

  • McHale M.R.,Mitchell M.J.,McDonnell J.J. andCirmo C.P. 2000. Nitrogen solutes in an Adirondack forested watershed: Importance of dissolved organic nitrogen. Biogeochem. 48: 165-184.

    Google Scholar 

  • Melin E. andNilsson H. 1953. Transfer of labeled nitrogen from glutamic acid to pine seedlings through the mycelium of Boletus variegarus (Sw) Fr. Nature 171: 134.

    Google Scholar 

  • Merritts D.J.,Chadwick O.A. andHendricks D.M. 1991. Rates and processes of soil evolution on uplifted marine terraces, northern California. Geoderma 51: 241-275.

    Google Scholar 

  • Michalzik B. andMatzner E. 1999. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem. Eur. J. Soil Sci. 50: 579-590.

    Google Scholar 

  • Michalzik B.,Kalbitz K.,Park J.-H.,Solinger S. andMatzner E. 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen-a synthesis for temperate forests. Biogeochem. 52: 173-205.

    Google Scholar 

  • Monreal C.M. andMcGill W.B. 1985. Centrifugal extraction and determination of free amino acids in soil solutions by TLC using tritiated 1-fluoro-2,4-dinitrobenzene. Soil Biol. Biochem. 17: 533-539.

    Google Scholar 

  • Näsholm T.,Ekblad A.,Nordin A.,Giesler R.,Högberg M. andHögberg P. 1998. Boreal forest plants take up organic nitrogen. Nature 392: 914-916.

    Google Scholar 

  • National Oceanic & Atmospheric Administration 1998-99. Local climatological data-monthly summary, Fort Bragg, California. National Climatic Data Center, Asheville, NC, US.

    Google Scholar 

  • Northup R.,Yu Z.,Dahlgren R.A. andVogt K. 1995. Polyphenol control of nitrogen release from pine litter. Nature 377: 227-229.

    Google Scholar 

  • Padgett P.E. andLeonard R.T. 1996. Free amino acid levels and the regulation of nitrate uptake in maize cell suspension cultures. J. Exp. Botany 47: 871-883.

    Google Scholar 

  • Prescott C.E. andWeetman G.F. 1994. Salal cedar hemlock integrated research program: A synthesis. Faculty of Forestry. University of British Columbia, Vancouver, B.C.

    Google Scholar 

  • Qualls R.G. 1989. The Biogeochemical Properties of Dissolved Organic Matter in the Soil and Streamwater of a Deciduous Forest Ecosystem: Their Influence on the Retention of Nitrogen, phosphorus, and Carbon. PhD Dissertation, University of Georgia, Athens, USA.

    Google Scholar 

  • Qualls R.G. andHaines B.L. 1991. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci. Soc. Am. J. 55: 1112-1123.

    Google Scholar 

  • Qualls R.G. andHaines B.L. 1992. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci. Soc. Am. J. 56: 578-586.

    Google Scholar 

  • Raab T.K.,Lipson D.A. andMonson R.K. 1996. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Koresia myosuroides: implication for the alpine nitrogen cycle. Oecologia 108: 488-494.

    Google Scholar 

  • Raab T.K.,Lipson D.A. andMonson R.K. 1999. Soil amino acid utilization among species of the Cyperace: plant and soil processes. Ecology 80: 2408-2419.

    Google Scholar 

  • Read D.J. 1991. Mycorrhizas in ecosystems. Experientia 47: 376-391.

    Google Scholar 

  • Scalbert A.,Monties B. andJanin J. 1989. Tannin in wood: comparison of different estimation method. J. Agric. Food Chem. 37: 1324-1329.

    Google Scholar 

  • Schimel J.,Van Cleve K.,Cates R.,Clausen T. andReichardt P. 1996. Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: Implications for changes in N cycling during succession. Can. J. Bot. 74: 84-90.

    Google Scholar 

  • Schimel J.P.,Cates R.G. andRuess R. 1998. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochem. 42: 221-234.

    Google Scholar 

  • Schnitzer M. andSpiteller M. 1986. The chemistry of the “unknown” soil nitrogen. Tans. 13th Conf. Int. Soil Sci. Soc., Hamburg 3: 473-474.

    Google Scholar 

  • Schulten H.R. andSchnitzer M. 1998. The chemistry of soil organic nitrogen: a review. Biol. Fertil. Soils 26: 1-15.

    Google Scholar 

  • Senwo Z.N. andTabatabai M.A. 1998. Amino acid composition of soil organic matter. Biol. Fertil. Soils 26: 235-242.

    Google Scholar 

  • Sholars R.E. 1982. The Pygmy Forest and Associated Plant Communities of Coastal Mendocino County. Black Bear Press, California, Mendocino, USA, 50 p.

    Google Scholar 

  • Sollins P. andMcCorison F.M. 1981. Nitrogen and carbon solution chemistry of an old growth coniferous forests watershed before and after cutting. Water Resour. Res. 17: 1409-1418.

    Google Scholar 

  • Sowden F.J.,Chen Y. andSchnitzer M. 1977. The nitrogen distribution in soils formed under widely differing climatic conditions. Geochim. Cosmochim. Acta 41: 1524-1526.

    Google Scholar 

  • Stevenson F.J. 1954. Ion exchange chromatography of amino acids in soil hydrolysates. Soil Sci. Soc. Am. Proc. 18: 373-376.

    Google Scholar 

  • Stevenson F.J. 1956. Effect of some long-time rotations on the amino acid composition of the soil. Soil Sci. Soc. Am. Proc. 20: 204-208.

    Google Scholar 

  • Stevenson F.J. 1994. Humus Chemistry. 2nd edn. J Wiley, New York.

    Google Scholar 

  • Thurman E.M. andMalcolm R.L. 1981. Preparative isolation of aquatic humic substances. Environ. Sci. Technol. 15: 463-466.

    Google Scholar 

  • Titus B.B.,Sidhu S.S. andMallik A.U. 1995. A summary of some studies on Kalmia angustifolia L.: A problem species in Newfoundland forestry. Canadian Forest Service Information Report N-X-296.

  • Tsugita A.,Uchida T.,Werner Mewes H. andAtaka T. 1987. A rapid-vapor phase acid (hydrochloric acid and trifluoroacetic acid) hydrolysis of peptide and protein. J. Biochem. 102: 1593-1597.

    Google Scholar 

  • Van Cleve K. andWhite R. 1980. Forest-floor nitrogen dynamics in a 60-year-old paper birch ecosystem in interior Alaska. Plant Soil 54: 359-381.

    Google Scholar 

  • Young J.L. andMortenson J.L. 1958. Soil nitrogen complexes. I. Chromatography of amino compounds in soil hydrolysates. Ohio Agric. Exp. Stn. Res. Circ. 61: 1-18.

    Google Scholar 

  • Yu Z.S.,Northup R.R. andDahlgren R.A. 1993. Determination of dissolved organic nitrogen using persulfate oxidation and onductimetric quantification of nitrate-nitrogen. Commun. Soil Sci. Plant Anal. 25: 3161-3169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z., Zhang, Q., Kraus, T. et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 61, 173–198 (2002). https://doi.org/10.1023/A:1020221528515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020221528515

Navigation