Skip to main content
Log in

Acetyl-l-Carnitine Protects Against Amyloid-Beta Neurotoxicity: Roles of Oxidative Buffering and ATP Levels

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acetyl-l-carnitine (ALCAR), normally produced in mitochondria, is a precursor of acetyl-CoA in the tricarboxylic (TCA) cycle. Since mitochondrial compromise and ATP depletion have been considered to play a role in neuronal degeneration in Alzheimer's disease (AD), we examined whether ALCAR attenuated oxidative stress and/or ATP depletion after exposure of cells to beta-amyloid (Abeta), a neurotoxic peptide that accumulates in AD brain. Differentiated SH-SY-5Y human neuroblastoma cells were exposed for 2–24 h to 20 μM Abeta in the presence and absence of 50 μM ALCAR. ALCAR attenuated oxidative stress and cell death induced by Abeta neurotoxicity. Abeta depleted ATP levels, suggesting Abeta may induce neurotoxicity in part by compromising neuronal energy. ALCAR prevented ATP depletion; therefore, ALCAR may mediate its protective effect by buffering oxidative stress and maintaining ATP levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pettegrew, J. W., Levine, J., and McClure, R. J. 2000. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer's disease and geriatric depression. Mol. Psychiatry. 5:616–632.

    PubMed  Google Scholar 

  2. Gadaleta, M. N., Petruzzella, V., Renis, M., Fracasso, F., and Cantatore, P. 1990. Reduced transcription of mitochondrial DNA in the senescent rat.: Tissue dependence and effect of L-carnitine. Eur. J. Biochem. 187:501–506.

    PubMed  Google Scholar 

  3. Hagen, T. M., Ingersoll, R. T., Wehr, C M., Lykkesfeldt, J., Vinarsky, V., Bartholomew, J. C., Song, M. H., and Ames, B. N. 1998. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc. Natl. Acad. Sci. U.S.A. 95:9562–9566.

    PubMed  Google Scholar 

  4. Paradies, G., Ruggiero, F. M., Petrosillo, G., Gadaleta, M. N., and Quagliariello, E. 1994. Effect of aging and acetyl-L-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria. FEBS Lett. 350:213–215.

    Article  PubMed  Google Scholar 

  5. Shigenaga, M. K., Hagen, T. M., and Ames, B. N. 1994. Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. U.S.A. 91:10771–10778.

    PubMed  Google Scholar 

  6. Brooks, J. O. 3rd, Yesavage, J. A., Carta, A., and Bravi, D. 1998. Acetyl L-carnitine slows decline in younger patients with Alzheimer's disease: A reanalysis of a double-blind, placebocontrolled study using the trilinear approach. Int. Psychogeriatr. 10:193–203.

    PubMed  Google Scholar 

  7. Thal, L. J., Carta, A., Clarke, W. R., Ferris, S. H., Friedland, R. P., Petersen, R. C., Pettegrew, J. W., Pfeiffer, E., Raskind, M. A., Sano, M., Tuszynski, M. H., and Woolson, R. F. (1996) A 1–year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer's disease. Neurology 47:705–711.

    PubMed  Google Scholar 

  8. Behl, C., Davis, J., Cole, G. M., and Schubert, D. 1992. Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem. Biophys. Res. Commun. 186:944–950.

    PubMed  Google Scholar 

  9. Yankner, B. A., Duffy, L. K., and Kirshner, D. A. 1990. Neurotrophic and neurotoxic effects of amyloid b protein: Reversal by tachykinin neuropeptides. Science 250:279–282.

    PubMed  Google Scholar 

  10. Ekinci, F. J., Malik, K. U., and Shea, T. B. 1999. Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to beta-amyloid.: MAP kinase mediates beta-amyloid-induced neurodegeneration. J. Biol. Chem. 274:30322–30327.

    PubMed  Google Scholar 

  11. Kawahara, M. and Kuroda, Y. 2000. Molecular mechanism of neurodegeneration induced by Alzheimer's b-amyloid protein: Channel formation and disruption of calcium homeostasis. Brain Res. Bull. 53:389–397.

    PubMed  Google Scholar 

  12. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. 1992. Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376–389.

    PubMed  Google Scholar 

  13. Ueda, K., Shinohara, S., Yagami, T., Asakura, K., and Kawasaki, K. 1997. Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: A possible involvement of free radicals. J. Neurochem. 68:265–271.

    PubMed  Google Scholar 

  14. Behl, C., Davis, J. B., Lesley, R., and Schubert, D. 1994. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827.

    Article  PubMed  Google Scholar 

  15. Ekinci, F. J., Linsley, M. D., and Shea, T. B. 2000. Beta-amyloid-induced calcium influx induces apoptosis in culture by oxidative stress rather than tau phosphorylation. Brain Res. Mol. Brain Res. 76:389–395.

    PubMed  Google Scholar 

  16. Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., Aksenova, M., Gabbita, S. P., Wu, J. F., Carney, J. M., Lovell, M., Markesbery, W. R., and Butterfield, D. A. 1995. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65:2146–2156.

    PubMed  Google Scholar 

  17. Wallace, D. C. 1999. Mitochondrial diseases in man and mouse. Science 283:1482–1488.

    PubMed  Google Scholar 

  18. Lambert, M. P., Stevens, G., Sabo, S., Barber, K., Wang, G., Wade, W., Krafft, G., Snyder, S., Holzman, T. F., and Klein, W. L. 1994. Beta/A4–evoked degeneration of differentiated SH-SY5Y human neuroblastoma cells. J. Neurosci. Res. 39: 377–385.

    PubMed  Google Scholar 

  19. Shea, T. B. 1997. Phospholipids alter tau conformation, phosphorylation, proteolysis, and association with microtubules: Implication for tau function under normal and degenerative conditions. J. Neurosci. Res. 50:114–122.

    PubMed  Google Scholar 

  20. Luo, Y., Bond, J. D., and Ingram, V. M. 1997. Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc. Natl. Acad. Sci. U.S.A. 94:9705–9710.

    PubMed  Google Scholar 

  21. Ekinci, F. J. and Shea, T. B. 2000. Phosphorylation of tau alters its association with the plasma membrane. Cell Mol. Neurobiol. 20:497–508.

    PubMed  Google Scholar 

  22. Sato, M., Matsuki, Y., Oguma, T., Tsujimoto, K., Takayama, E., and Tadakuma, T. 2000. Inhibition of glucocorticoid-induced apoptosis by the expression of antisense gene of mitochondrial ATPase subunit 6. FEBS Lett. 478:34–38.

    PubMed  Google Scholar 

  23. Budd, S. L. and Nicholls, D. G. 1996. A reevaluation of the role of mitochondria in neuronal Ca2+ homeostasis. J. Neurochem. 66:403–411.

    PubMed  Google Scholar 

  24. Capecchi, P. L., Laghi Pasini, F., Quartarolo, E., and Di Perri, T. 1997. Carnitines increase plasma levels of adenosine and ATP in humans. Vasc. Med. 2:77–81.

    PubMed  Google Scholar 

  25. Dhitavat, S., Rivera, E. R., Rogers, E., and Shea, T. B. 2001. Differential efficacy of lipophilic and cytosolic antioxidants on generation of reactive oxygen species by amyloid-beta. J. Alzheimer's Dis. In press.

  26. Aureli, T., Puccetti, C., Di Cocco, M. E., Arduini, A., Ricciolini, R., Scalibastri, M., Manetti, C., and Conti, F. 1999. Entry of [(1,2–13C2) acetyl]-L-carnitine in liver tricarboxylic acid cycle and lipogenesis: A study by 13C NMR spectroscopy in conscious, freely moving rats. Eur. J. Biochem. 263:287–293.

    PubMed  Google Scholar 

  27. Beaver, J. P. and Waring, P. 1995. A decrease in intracellular glutathione concentration precedes the onset of apoptosis in murine thymocytes. Eur. J. Cell. Biol. 68:47–54.

    PubMed  Google Scholar 

  28. Mark, R. J., Lovell, M. A., Markesbery, W. R., Uchida, K., and Mattson, M. P. (1997) A role for 4–hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J. Neurochem 68:255–264.

    PubMed  Google Scholar 

  29. Hoshi, M., Takashima, A., Murayama, M., Yasutake, K., Yoshida, N., Ishiguro, K., Hoshino, T., and Imahori, K. 1997. Nontoxic amyloid beta peptide 1–42 suppresses acetylcholine synthesis: Possible role in cholinergic dysfunction in Alzheimer's disease. J. Biol. Chem. 272:2038–2041.

    PubMed  Google Scholar 

  30. Kashiwaya, Y., Takeshima, T., Mori, N., Nakashima, K., Clarke, K., and Veech, R. L. 2000. D-beta-Hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 97:5440–5444.

    PubMed  Google Scholar 

  31. Gray, C. W. and Patel, A. J. 1995. Neurodegeneration mediated by glutamate and beta-amyloid peptide: A comparison and possible interaction. Brain Res. 691:169–179.

    PubMed  Google Scholar 

  32. Ho, P., Collins, S. C., Dhitavat, S., Ortiz, D., Ashline, D., Rogers, E., and Shea, T. B. 2001. Homocysteine potentiates beta-amyloid neurotoxicity: Role of oxidative stress. J. Neurochem. 78:24–25.

    PubMed  Google Scholar 

  33. Ho, P., Ashline, D., Dhitavat, S., Ortiz, D., Collins, S. C., Rogers, E., and Shea, T. B. 2001. Folate deprivation induces neurodegeneration: Roles of oxidative stress and increased homocysteine. Mol. Biol. Cell In press.

  34. Kruman, I. I., Culmsee, C., Chan, S., Kruman, Y., Guo, Z., Penix, L., and Mattson, M. P. 2000. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20:6920–6926.

    PubMed  Google Scholar 

  35. Levitt, A. J. and Karlinsky, H. 1992. Folate, vitamin B12 and cognitive impairment in patients with Alzheimer's disease. Acta Psychiatr. Scand. 86:301–305.

    PubMed  Google Scholar 

  36. McCaddon, A. and Kelly, C. L. 1992. Familial Alzheimer's disease and vitamin B12 deficiency. Age Ageing 23:334–337.

    Google Scholar 

  37. Miller, J. W. 2000. Homocysteine, Alzheimer's disease and cognitive function. Nutrition 16:675–677.

    PubMed  Google Scholar 

  38. White, A. R., Huang, X., Jobling, M. F., Barrow, C. H., Beyreuther, K., Masters, C. L., Bush, A. I., and Cappai, R. 2001. Homocysteine potentiates copper-and amyloid beta peptide-mediated toxicity in primary cultures: Possible risk factors in the Alzheimer's-type neurodegenerative pathways. J. Neurochem. 76:1509–1520.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhitavat, S., Ortiz, D., Shea, T.B. et al. Acetyl-l-Carnitine Protects Against Amyloid-Beta Neurotoxicity: Roles of Oxidative Buffering and ATP Levels. Neurochem Res 27, 501–505 (2002). https://doi.org/10.1023/A:1019800703683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019800703683

Navigation