Skip to main content
Log in

On the Interference of Fullerenes and Other Massive Particles

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We report the results of an optical analogue of the fullerene molecule diffraction experiment. Our results, and an analysis of the fullerene experiment, suggest that the patterns observed in the latter can be explained using a localized particle model. There is no evidence that the grating period contributed to the published fullerene diffraction pattern. De Broglie waves, if they exist, are unlikely to have played a significant part in the fullerene diffraction experiment. The observed patterns are not consistent with those expected according to wave theory for the experimental geometry corresponding to the slit-detector system and the de Broglie wavelength. The measurements were performed in the near field, making the demonstration of wave properties difficult. We outline a new classical approach to the electron and neutron interference experiments. The magnetic moment is crucial to this model, which emphasizes a mechanism for generating narrow-band continuum X-radiation. Some experiments are proposed which can decide between the suggested model and quantum mechanics, and which can also rule out an alternative stochastic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics, Commemorative Issue (Addison–Wesley, Reading, MA, 1989), Vol. I, Chap. 37.

    Google Scholar 

  2. P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173 (1986).

    Google Scholar 

  3. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, Am. J. Phys. 57 (2), 117 (1989).

    Google Scholar 

  4. A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampe, Rev. Mod. Phys. 60, 1067 (1988); A. Zeilinger, R. Gaehler, C. G. Shull, and W. Treimer, in Proceedings of the Conference on Neutron Scattering, Argonne, 1981, J. Faber, Jr. ed. (AIP, New York, 1982), pp. 93–99.

    Google Scholar 

  5. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, Nature 401, 680 (1999).

    Google Scholar 

  6. M. O. Scully, B.-G. Englert, and H. Walther, Nature 351, 111 (1991).

    Google Scholar 

  7. U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, W. M. Itano, D. J. Wineland, and M. G. Raizen, Phys. Rev. Lett. 70, 2359 (1993).

    Google Scholar 

  8. G. Möllenstedt and H. Düker, Z. Phys. 145, 377 (1956).

    Google Scholar 

  9. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), pp. 441–442.

    Google Scholar 

  10. E. Hecht and A. Zajac, Optics (Addison–Wesley, Reading, Massachusetts, 1974), pp. 333–336.

    Google Scholar 

  11. O. Nairz, M. Arndt, and A. Zeilinger, “Experimental verification of the Heisenberg uncertainty principle for hot fullerene molecules, ” archive: quant-ph/0105061 (2001).

  12. E. Hecht and A. Zajac, Optics (Addison–Wesley, Reading, Massachusetts, 1974), pp. 467–468.

    Google Scholar 

  13. T. W. Marshall and E. Santos, Found. Phys. 18, 185 (1988).

    Google Scholar 

  14. S. Sulcs, G. Oppy, and B. C. Gilbert, J. Phys. A: Math. Gen. 33, 3997 (2000).

    Google Scholar 

  15. K. Dechoum, L. de la Peña, and E. Santos, Found. Phys. Lett. 13, 253 (2000).

    Google Scholar 

  16. M. Szilagyi, Electron and Ion Optics (Plenum, New York, 1988), p. 391. K. D. van der Mast, in Electron Microscopy in Materials Science, P. G. Merli and M. V. Antisari, eds. (World Scientific, Singapore, 1992), pp. 3–37.

    Google Scholar 

  17. H. R. Crane, Sci. Am. 218 (1), 72 (1968).

    Google Scholar 

  18. A. F. Ranãda and M. F. Ranãda, J. Phys. A: Math. Gen. 12, 1419 (1979).

    Google Scholar 

  19. A. O. Barut, in Quantum Mechanics Versus Local Realism: The Einstein–Podolsky–Rosen Paradox, F. Selleri, ed. (Plenum, New York, 1988), pp. 433–446.

    Google Scholar 

  20. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), pp. 522 ff.

    Google Scholar 

  21. Ref. 19, pp. 395 ff.

  22. G. I. Taylor, Proc. Camb. Phil. Soc. 15, 114 (1909).

    Google Scholar 

  23. A. H. Sørenson and E. Uggerhøj, Nature 325, 311 (1987).

    Google Scholar 

  24. K. Wiesenfeld and F. Moss, Nature 373, 33 (1995).

    Article  PubMed  Google Scholar 

  25. A. G. Klein, P. D. Kearney, G. I. Opat, A. Cimmino, and R. Gähler, Phys. Rev. Lett. 46, 959 (1981). A. G. Klein, G. I. Opat, A. Cimmino, A. Zeilinger, W. Treimer, and R. Gähler, Phys. Rev. Lett. 46, 1551 (1981). R. Gähler, J. Kalus, and W. Mampe, J. Phys. E: Sci. Instrum. 13, 546 (1980).

    Google Scholar 

  26. U. Bonse and H. Rauch, eds., Neutron Interferometry: Proceedings of an International Workshop Held 5–7 June 1978 at the Institut Max von Laue-Paul Langevin Grenoble (Clarendon Press, Oxford, 1979).

    Google Scholar 

  27. H. A. Enge, Introduction to Nuclear Physics (Addison–Wesley, Reading, Massachusetts, 1966), p. 215.

    Google Scholar 

  28. H. E. Puthoff, Phys. Rev. A 40, 4857 (1989).

    Google Scholar 

  29. F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer Academic, Dordrecht, 1990), pp. 77–81.

    Google Scholar 

  30. D. A. Rice, Found. Phys. 27, 1345 (1997).

    Google Scholar 

  31. L. de la Penã and A. M. Cetto, Found. Phys. 24, 753 (1994); The Quantum Dice: an Introduction to Stochastic Electrodynamics (Kluwer Academic, Dordrecht, 1996), pp. 378–382.

    Google Scholar 

  32. T. H. Boyer, Phys. Rev. D 29, 1096 (1984).

    Google Scholar 

  33. E. Nelson, Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  34. A. F. Ranãda, M. F. Raãda, M. Soler, and L. Vásquez, Phys. Rev. D 10, 517 (1974).

    Google Scholar 

  35. J. W. G. Wignall, Found. Phys. 17, 123 (1987).

    Google Scholar 

  36. E. Santos, Found. Phys. 22, 371 (1992).

    Google Scholar 

  37. R. M. Eisberg, Fundamentals of Modern Physics (Wiley, New York, 1961), p. 328.

    Google Scholar 

  38. Y. Koh, in Wave-Particle Duality, F. Selleri, ed. (Plenum, New York, 1992), pp. 139–156.

    Google Scholar 

  39. S. Sulcs and B. C. Gilbert, “Eddy currents in the Stern-Gerlach experiment, ” accepted for publication in Can. J. Phys.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulcs, S., Gilbert, B.C. & Osborne, C.F. On the Interference of Fullerenes and Other Massive Particles. Foundations of Physics 32, 1251–1271 (2002). https://doi.org/10.1023/A:1019771303840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019771303840

Navigation