Skip to main content
Log in

Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the role of entanglement in quantum phase transitions, and show that the success of the density matrix renormalization group (DMRG) in understanding such phase transitions is due to the way it preserves entanglement under renormalization. We provide a reinterpretation of the DMRG in terms of the language and tools of quantum information science which allows us to rederive the DMRG in a physically transparent way. Motivated by our reinterpretation we suggest a modification of the DMRG which manifestly takes account of the entanglement in a quantum system. This modified renormalization scheme is shown, in certain special cases, to preserve more entanglement in a quantum system than traditional numerical renormalization methods.

PACS: 03.65.Ud, 73.43.Nq, 05.10.-a

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Schrödinger, Proc. Camb. Philos. Soc. 31, 555 (1435)

    Google Scholar 

  2. J. S. Bell, Physics 1A, 195 (1964).

    Google Scholar 

  3. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wooters, Phys. Rev. A. 54, 3824 (1996).

    Google Scholar 

  4. D. Aharonov, Phys. Rev. A. 62, 2311 (1999).

    Google Scholar 

  5. M. A. Nielsen, Ph.D. thesis, University of New Mexico (1998), quant-ph/0011036.

  6. J. Preskill, J. Mod. Opt. 47, 127 (2000).

    Google Scholar 

  7. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  8. R. M. Noack and S. R. White, in Density-matrix Renormalization (Dresden, 1998) (Springer, Berlin, 1999).

    Google Scholar 

  9. K. G. Wilson, Rev. Modern Phys. 47, 773 (1975).

    Google Scholar 

  10. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

    Google Scholar 

  11. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum in Formation (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  12. J. Preskill (1998), Physics 229 Lecture Notes online at http://www.theory.caltech/edu/ people/preskill/ph229/.

  13. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1995).

    Google Scholar 

  14. M. E. Fisher, Rev. Modern Phys. 70 (1998).

  15. R. Bhatia, Matrix analysis (Springer Verlag, New York, 1997).

    Google Scholar 

  16. G. Vidal, D. Jonathan, and M. A. Nielsen, Phys. Rev. A (3) 62, 012304 (2000).

    Google Scholar 

  17. H. Barnum (1999), quant-ph/9910072.

  18. T. J. Osborne and M. A. Nielsen (2002), quant-ph/0202162.

  19. S. Rommer and Östlund, in Density-matrix Renormalization (Dresden, 1998) (Springer, Berlin, 1999), pp. 67-89.

    Google Scholar 

  20. P. Horodecki, R. Horodecki and M. Horodecki, Acta Phys. Slov. 48, 141 (1998).

    Google Scholar 

  21. X. Wang, H. Fu, and A. I. Solomon (2001), quanti-ph/0105075.

  22. D. Gunlycke, S. Bose, V. M. Kendon, and V. Vedral (2001), quant-ph/0102137.

  23. M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87, 2245 (2001).

    Google Scholar 

  24. D. A. Meyer and N. R. Wallach (2001), quanti-ph/0108104.

  25. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, T.J., Nielsen, M.A. Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization. Quantum Information Processing 1, 45–53 (2002). https://doi.org/10.1023/A:1019601218492

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019601218492

Navigation