Skip to main content
Log in

A new transformation for the Lotka–Volterra problem

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Lotka–Volterra dynamical system \(\left( {\dot x_1 = ax_1 - bx_1 x_2 ,\;\dot x_2 = - cx_2 + bx_1 x_2 } \right)\) is reduced to a single second‐order autonomous ordinary differential equation by means of a new variable transformation. Formal analytic solutions are presented for this latter differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965) pp. 896–897.

    Google Scholar 

  2. C.M. Evans and G.L. Findley, Analytic solutions to a family of Lotka-Volterra related differential equations, J. Math. Chem., submitted.

  3. E. Hofelich Abate and F. Hofelich, Solution by means of Lie-series to the laser rate equations for a giant pulse including spontaneous emission, Z. Phys. 209 (1968) 13–32.

    Google Scholar 

  4. E. Hofelich Abate and F. Hofelich, An analytic solution of the Lotka-Volterra equations, Z. Natursforschg. 24B (1969) 132.

    Google Scholar 

  5. E.H. Kerner, Dynamical aspects of kinetics, Bull. Math. Biophys. 26 (1964) 333–349.

    Google Scholar 

  6. E.H. Kerner, Note on Hamiltonian format of Lotka-Volterra dynamics, Phys. Lett. A 151 (1990) 401–402.

    Google Scholar 

  7. E.H. Kerner, Comment on Hamiltonian structures for the n-dimensional Lotka-Volterra equations, J. Math. Phys. 38 (1997) 1218–1223.

    Google Scholar 

  8. A.J. Lotka, Undamped oscillations derived from the law of mass action, J. Am. Chem. Soc. 42 (1920) 1595–1599.

    Google Scholar 

  9. Maple V, Rel. 4.00a (Waterloo Maple, Inc., Waterloo, Ontario, Canada).

  10. N. Minorsky, Nonlinear Oscillations (Van Nostrand, Princeton, 1962).

    Google Scholar 

  11. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977), and references therein.

    Google Scholar 

  12. Y. Nutku, Hamiltonian structure of the Lotka-Volterra equations, Phys. Lett. A 145 (1990) 27–28.

    Google Scholar 

  13. M. Plank, Hamiltonian structures for the n-dimensional Lotka-Volterra equations, J. Math. Phys. 36 (1995) 3520–3534, and references therein.

    Google Scholar 

  14. M.R. Roussel, An analytic center manifold for a simple epidemiological model, SIAM Rev. 39 (1997) 106–109.

    Google Scholar 

  15. K.-i. Tainaka, Stationary pattern of vortices or strings in biological systems: Lattice version of the Lotka-Volterra model, Phys. Rev. Lett. 63 (1989) 2688–2691, and references therein.

    Google Scholar 

  16. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems (Springer, Berlin, 1990).

    Google Scholar 

  17. V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, in: Animal Ecology, ed. R.N. Chapman (McGraw-Hill, New York, 1926) pp. 409–448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, C., Findley, G. A new transformation for the Lotka–Volterra problem. Journal of Mathematical Chemistry 25, 105–110 (1999). https://doi.org/10.1023/A:1019172114300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019172114300

Keywords

Navigation